`a`
Mathematical Biosciences and Engineering (MBE)
 

Low viral persistence of an immunological model
Pages: 809 - 817, Issue 4, October 2012

doi:10.3934/mbe.2012.9.809      Abstract        References        Full text (418.9K)           Related Articles

Suqi Ma - Department of Mathematics, China Agricultural University, Beijing 100083, China (email)

1 P. M. Argium, P. E. Kozarsky and C. Reed, "CDC Health Information for International Travel 2008," Elsevier, Philadelphia, 2007.
2 S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biological Dynamic, 2 (2008), 140-153.       
3 R. M. Zinkernagel, What is missing in immunology to understand immunity?, Nat. Immunol., 1 (2000), 181-185.
4 B. Rehermann, C. Ferrari, C. Pasquinelli and F. V. Chisari, The hepatitis B virus persists for decades after patient's recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response, Nat. Med., 2 (1996), 1104-1108.
5 L. Tatyana, R. Dirk and B. Gennady, Numerical bifurcation analysis of immunological models with time delays, Journal of Computational and Applied Mathematics, 184 (2005), 165-176.       
6 L. Tatyana and E. Koen, Low level viral persistence after infection with LCMV: A quantitative insight through numerical bifurcation analysis, Mathematical Biosciences, 173 (2001), 1-23.       
7 G. Bocharov and B. Ludewig, etc., Underwhelming the immune response: Effect of slow virus growth rates on $CD8^+ T$ lymphocyte responses, J. Virol., 78 (2004), 2247-2254.
8 C. T. H. Baker, Retarded differential equations, J. Comput. Appl. Math., 125 (2000), 309-335.       
9 G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199.       
10 Z. H. Wang and H. Y. Hu, Stability switches of time-delayed dynamic systems with unknown parameters, Journal of Sound and Vibration, 233 (2000), 215-233.       
11 Z. H. Wang and H. Y. Hu, Delay independent stability of retarded dynamic system of multiple degrees of freedom, Journal of Sound and Vibration, 226 (1999), 57-81.       
12 S. Q. Ma, Z. S. Feng and Q. S. Lu, The double Hopf bifurcation of a neuron model with time delay, Int. J. Bifurcation and Chaos, 19 (2009), 3733-3751.       
13 S. Q. Ma and Z. S. Feng, Fold-Hopf Bifurcation of the Rose-Hindmarsh model with time delay, Int. J. Bifurcation and Chaos, 19 (2011), 437-452.       
14 K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations, J. Comput. Appl. Math., 125 (2000), 265-275.       
15 K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21.       

Go to top