`a`
Journal of Modern Dynamics (JMD)
 

Time-changes of horocycle flows
Pages: 251 - 273, Issue 2, April 2012

doi:10.3934/jmd.2012.6.251      Abstract        References        Full text (247.4K)           Related Articles

Giovanni Forni - Department of Mathematics, University of Maryland, College Park, MD 20742-4015, United States (email)
Corinna Ulcigrai - School of Mathematics, University of Bristol, University Walk, Clifton, BS8 1TW,Bristol, United Kingdom (email)

1 V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. (2), 48 (1947), 568-640.       
2 A. Bufetov and G. Forni, Limit theorems for horocycle flows, preprint, arXiv:1104.4502v1, (2011), 1-52.
3 M. Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803.       
4 S. G. Dani, Invariant measures and minimal sets of horospherical flows, Invent. Math., 64 (1981), 357-385.       
5 L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.       
6 H. Furstenberg, The unique ergodicity of the horocycle flow, in "Recent Advances in Topological Dynamics" (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Math., 318, Springer, Berlin, (1973), 95-115.       
7 I. M. Gel'fand and S. V. Fomin, Unitary representations of Lie groups and geodesic flows on surfaces of constant negative curvature, (Russian), Dokl. Akad. Nauk SSSR (N.S.), 76 (1951), 771-774.       
8 I. M. Gelfand and M. Neumark, Unitary representations of the Lorentz group, Acad. Sci. USSR. J. Phys., 10 (1946), 93-94.       
9 B. M. Gurevič, The entropy of horocycle flows, (Russian), Dokl. Akad. Nauk SSSR, 136 (1961), 768-770.       
10 G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J., 2 (1936), 530-542.       
11 D. A. Hejhal, On the uniform equidistribution of long closed horocycles. Loo-Keng Hua: A great mathematician of the twentieth century, Asian J. Math., 4 (2000), 839-853.       
12 A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, in "Handbook of Dynamical Systems," Vol. 1B (eds. B. Hasselblatt and A. Katok), Elsevier B. V., Amsterdam, (2006), 649-743.       
13 A. G. Kušnirenko, Spectral properties of certain dynamical systems with polynomial dispersal, Vestnik Moskovskogo Universiteta. Ser. I Matematika Meh., 29 (1974), 101-108.       
14 B. Marcus, Unique ergodicity of the horocycle flow: Variable negative curvature case, Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974), Israel J. Math., 21 (1975), 133-144.       
15 _____, Ergodic properties of horocycle flows for surfaces of negative curvature, Ann. of Math. (2), 105 (1977), 81-105.       
16 C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in "Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics" (Berkeley, Calif., 1984) (ed. C. C. Moore), Mathematical Science Research Institute Publications, 6, Springer, New York, (1987), 163-181.       
17 E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys., 78 (1980/81), 391-408.       
18 O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature, (Russian), Uspekhi Mat. Nauk (N.S.), 8 (1953), 125-126.       
19 M. Ratner, Factors of horocycle flows, Ergodic Theory Dynam. Systems, 2 (1982), 465-489.       
20 _____, Rigidity of horocycle flows, Ann. of Math. (2), 115 (1982), 597-614.       
21 _____, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), 118 (1983), 277-313.       
22 _____, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288.       
23 P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739.       
24 A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J., 123 (2004), 507-547.       
25 R. Tiedra de Aldecoa, Spectral analysis of time changes for horocycle flows, arXiv:1202.4640.
26 A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989-1094.       
27 D. Zagier, Eisenstein series and the Riemann zeta function, in "Automorphic Forms, Representation Theory and Arithmetic" (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst. Fund. Res., Bombay, (1981), 275-301.       

Go to top