Global properties of a delayed SIR epidemic
model with multiple parallel infectious stages
Pages: 685  695,
Issue 3,
July
2012
doi:10.3934/mbe.2012.9.685 Abstract
References
Full text (348.7K)
Related Articles
Xia Wang  Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 YiKuang Street Harbin, 150080 and College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, China (email)
Shengqiang Liu  Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 YiKuang Street, Harbin, 150080, China (email)
1 
K. L. Cooke, Stability analysis for a vector disease model, Rocky Mount. J. Math., 9 (1979), 3142. 

2 
R. V. Culshaw and S. Ruan, A delaydifferential equation model of HIV infection of CD4$^+$ T cells, Math. Biosci., 165 (2000), 2739. 

3 
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365382. 

4 
S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dynam., 2 (2008), 140153. 

5 
H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335356. 

6 
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599653. 

7 
V. Herz, S. Bonhoeffer, R. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus delay, Proc. Natl. Acad. Sci. USA, 93 (1996), 72477251. 

8 
J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations," Applied Mathematical Sciences, 99, SpringerVerlag, New York, 1993. 

9 
A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 7583. 

10 
A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 5760. 

11 
A. Korobeinikov, Global asymptotic properties of virus dynamics models with dosedependent parasite reproduction and virulence and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225239. 

12 
A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission, Bull. Math. Biol., 68 (2006), 615626. 

13 
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993. 

14 
M. Y. Li and H. Shu, Global dynamics of an inhost viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 14921505. 

15 
S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. Real World Appl., 12 (2011), 119127. 

16 
M. Y. Li and H. Shu, Impact of intracellular delays and targetcell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 24342448. 

17 
C. C. McCluskey, Global stability of an epidemic model with delay and general nonlinear incidence, Math. Biosci. and Eng., 7 (2010), 837850. 

18 
P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 11091140. 

19 
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. and Eng., 6 (2009), 603610. 

20 
C. C. McCluskey, Complete global stability for an SIR epidemic model with delaydistributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 5559. 

21 
C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. Real World Appl., 11 (2010), 31063109. 

22 
K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012), 98109. 

23 
Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931947. 

24 
J. Wang, G. Huang, Y. Takeuchi and S. Liu, Sveir epidemiological model with varying infectivity and distributed delays, Math. Biosci. and Eng., 8 (2011), 875888. 

25 
X. Wang, Y. D. Tao and X. Y. Song, A delayed HIV1 infection model with BeddingtonDeAngelis functional response, Nonlinear Dyn., 62 (2010), 6772. 

Go to top
