Mathematical Biosciences and Engineering (MBE)

Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study
Pages: 539 - 552, Issue 3, July 2012

doi:10.3934/mbe.2012.9.539      Abstract        References        Full text (466.2K)           Related Articles

Bruno Buonomo - Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy (email)
Eleonora Messina - Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy (email)

1 S. Anita, V. Arnăutu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics," Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, New York, 2011.       
2 E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model, Math. Biosci. Engineering, 5 (2008), 219-238.       
3 H. Behncke, Optimal control of deterministic epidemics, Optimal Control Appl. Methods, 21 (2000), 269-285.       
4 K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile Virus, Bull. Math. Biol., 72 (2010), 1006-1028.       
5 R. Boucekkine, J. B. Krawczyk and T. Vall\'ee, Environmental quality versus economic performance: A dynamic game approach, Optimal Control Appl. Methods, 32 (2011), 29-46.       
6 R. Boucekkine, C. Saglam and T. Vall\'ee, Technology adoption under embodiment: A two-stage optimal control approach, Macroeconomic Dynamics, 8 (2004), 250-271.
7 R. Bulirsch, E. Nerz, H. J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider, in "Optimal Control" (Freiburg, 1991), Internat. Ser. Numer. Math., 111, Birkh\"auser, Basel, (1993), 273-288.       
8 B. Buonomo, A simple analysis of vaccination strategies for rubella, Math. Biosci. Engineering, 8 (2011), 677-687.       
9 B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases, J. Biol. Sys., 19 (2011), 263-279.       
10 C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources," Third edition, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 2010.       
11 A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious disease, J. Theor. Biol., 256 (2009), 473-478.
12 Z. Feng, Y. Yang, D. Xu, P. Zhang, M. M. Mc Cauley and J. W. Glasser, Timely identification of optimal control strategies for emerging infectious diseases, J. Theor. Biol., 259 (2009), 165-171.
13 K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differential Equations, 1998, 12 pp.       
14 K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM J. Appl. Math., 60 (2000), 1059-1072.       
15 K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954-1971.       
16 W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.       
17 H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Engineering, 6 (2009), 469-492.       
18 D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror," Springer-Verlag, Berlin, 2008.       
19 A. Huhtala, A post-consumer waste management model for determining optimal levels of recycling and landfilling, Environ. Resour. Econom., 10 (1997), 301-314.
20 Italian Ministry of Health, "Nuova Influenza." Available from: http://www.nuovainfluenza.salute.gov.it/nuovainfluenza/nuovaInfluenza.jsp.
21 Italian Ministry of Health, "FluNews," no. 28, May 3-9, 2010 (18th week). Available from: http://www.nuovainfluenza.salute.gov.it/imgs/C_17_notiziario_63_allegato.pdf.
22 H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Appl. Methods, 23 (2002), 199-213.       
23 E. Jung, S. Iwami, Y. Takeuchi and T.-C. Jo, Optimal control strategy for prevention of avian influenza pandemic, J. Theor. Biol., 260 (2009), 220-229.
24 E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473-482.       
25 S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviraltreatment and isolation, J. Theor. Biol., 265 (2010), 136-150.
26 S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited, Math. Biosci. Engineering, 8 (2011), 171-182.       
27 S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.       
28 F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions, BMC Infect. Dis., 10 (2010), 32-45.
29 MATLAB© , "Matlab Release 12," The Mathworks Inc., Natich, MA, 2000.
30 R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera, Bull. Math. Biol., 72 (2010), 2004-2018.       
31 L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962.       
32 O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza, Math. Biosci. Engineering, 8 (2011), 141-170.       
33 R. J. Rossana, Delivery lags and buffer stocks in the theory of investment by the firm, J. Econ. Dyn. Control, 9 (1985), 135-193.       
34 W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations, in "Large-Scale Scientific Computing," Lecture Notes in Comput. Sci., 3743, Springer, Berlin, 2006, 255-262.       
35 K. Tomiyama, Two-stage optimal control problems and optimality conditions, J. Econ. Dyn. Control, 9 (1985), 317-337.       

Go to top