`a`
Journal of Modern Dynamics (JMD)
 

Genericity of nonuniform hyperbolicity in dimension 3
Pages: 121 - 138, Issue 1, January 2012

doi:10.3934/jmd.2012.6.121      Abstract        References        Full text (456.3K)           Related Articles

Jana Rodriguez Hertz - IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay (email)

1 A. Avila, On the regularization of conservative maps, Acta Mathematica, 205 (2010), 5-18.       
2 A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Transactions AMS, 364 (2012), 2883-2907.
3 A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergod. Th. & Dynam. Sys., 23 (2003), 1655-1670.       
4 J. Bochi, Genericity of zero Lyapunov exponents, Erg. Th. & Dyn. Sys., 22 (2002), 1667-1696.       
5 J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. Math., 161 (2005), 1423-1485.       
6 C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv., 79 (2004), 753-757.       
7 D. Gabai and W. Kazez, Group negative curvature for 3-manifolds with genuine laminations, Geom. Topol., 2 (1998), 65-77 (electronic).       
8 E. Grin, "Genericity of Diffeomorphisms with Zero Lyapunov Exponents Almost Everywhere," Msc. Thesis, Montevideo, 2010.
9 A. Haefliger, Variétés feuilletées, (French), Ann. Scuola Norm. Sup. Pisa (3), 16 (1962), 367-397.       
10 G. Hector and U. Hirsch, "Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One," Second edition, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1987.       
11 M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lect. Notes Math., 583, Springer-Verlag, Berlin-New York, 1977.       
12 J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana, 4 (1988), 187-193.       
13 R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540.       
14 R. Mañé, Oseledec's theorem from the generic viewpoint, in "Proc. Internat. Congress of Mathematicians" (Warsaw, 1983), Vol. 1, 2, PWN, Warsaw, (1984), 1269-1276.       
15 V. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-221.       
16 J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2), 42 (1941), 874-920.       
17 Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-112, 287.       
18 F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.       
19 F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, Journal of Modern Dynamics, 2 (2008), 187-208.       
20 F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and nonuniform hyperbolicity, Duke Math. Journal, 160 (2011), 599-629.       
21 P. Zhang, Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems, Disc. Cont. Dyn. Sys., 32 (2012), 1435-1447.       

Go to top