Journal of Modern Dynamics (JMD)

Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition
Pages: 59 - 78, Issue 1, January 2012

doi:10.3934/jmd.2012.6.59      Abstract        References        Full text (252.7K)           Related Articles

Claire Chavaudret - Département deMathématiques, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France (email)
Stefano Marmi - Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126, Pisa (PI), Italy (email)

1 A. Avila, B. Fayad and R. Krikorian, A KAM scheme for $SL(2,R)$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.       
2 A. D. Brjuno, An analytic form of differential equations, Math. Notes, 6 (1969), 927-931.
3 C. Chavaudret, Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles, to appear in Bull. Soc. Math. France, (2010), arXiv:0912.4814.
4 L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys., 146 (1992), 447-482.       
5 L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, in "Smooth Ergodic Theory and its Applications" (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001), 679-705.       
6 A. Giorgilli and S. Marmi, Convergence radius in the Poincaré-Siegel problem, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 601-621.       
7 R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.       
8 S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties, Comm. Math. Phys., 186 (1997), 265-293.       
9 J. Pöschel, KAM à la R, Regul. Chaotic Dyn., 16 (2011), 17-23.       
10 H. Rüssmann, KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 683-718.       
11 J.-C. Yoccoz, "Petits Diviseurs en Dimension 1", Astérisque, 231, Société mathématique de France, 1995.
12 L.-S. Young, Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.       
13 J. Wang and Q. Zhou, Reducibility results for quasiperiodic cocycles with Liouvillean frequency, J. Dynam. Differential Equations, 24 (2011), 61-83.

Go to top