Feedforward networks, center manifolds, and forcing
Pages: 2913  2935,
Issue 8,
August
2012
doi:10.3934/dcds.2012.32.2913 Abstract
References
Full text (541.7K)
Related Articles
Martin Golubitsky  Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43215, United States (email)
Claire Postlethwaite  Department of Mathematics, University of Auckland, Auckland 1142, New Zealand (email)
1 
N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Oscillations," Translated from the second revised Russian edition, International Monographs on Advanced Mathematics and Physics, Hindustan Publ. Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961. 

2 
J. Carr, "Applications of Centre Manifold Theory," Applied Mathematical Sciences, 35, SpringerVerlag, New YorkBerlin, 1981. 

3 
T. Elmhirst and M. Golubitsky, Nilpotent Hopf bifurcations in coupled cell systems, SIAM J. Appl. Dynam. Sys., 5 (2006), 205251. 

4 
J.M. Gambaudo, Perturbation of a Hopf bifurcation by an external timeperiodic forcing, J. Diff. Eqns., 57 (1985), 172199. 

5 
M. Golubitsky, M. Nicol and I. Stewart, Some curious phenomena in coupled cell networks, J. Nonlinear Sci., 14 (2004), 207236. 

6 
M. Golubitsky, C. Postlethwaite, L.J. Shiau and Y. Zhang, The feedforward chain as a filter amplifier motif, in "Coherent Behavior in Neuronal Networks," (eds. K. Josic, M. Matias, R. Romo and J. Rubin), Springer Ser. Comput. Neurosci., 3, Springer, New York, (2009), 95120. 

7 
M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I, Appl. Math. Sci., 51, SpringerVerlag, New York, 1985. 

8 
M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. II, Appl. Math. Sci., 69, SpringerVerlag, New York, 1988. 

9 
N. J. McCullen, T. Mullin and M. Golubitsky, Sensitive signal detection using a feedforward oscillator network, Phys. Rev. Lett., 98 (2007), 254101. 

10 
Y. Zhang, "Periodic Forcing of a System Near a Hopf Bifurcation Point," Ph.D Thesis, Department of Mathematics, Ohio State University, 2010. 

11 
Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dynam. Sys., to appear. 

Go to top
