Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Feed-forward networks, center manifolds, and forcing
Pages: 2913 - 2935, Issue 8, August 2012

doi:10.3934/dcds.2012.32.2913      Abstract        References        Full text (541.7K)                  Related Articles

Martin Golubitsky - Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43215, United States (email)
Claire Postlethwaite - Department of Mathematics, University of Auckland, Auckland 1142, New Zealand (email)

1 N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Non-linear Oscillations," Translated from the second revised Russian edition, International Monographs on Advanced Mathematics and Physics, Hindustan Publ. Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961.       
2 J. Carr, "Applications of Centre Manifold Theory," Applied Mathematical Sciences, 35, Springer-Verlag, New York-Berlin, 1981.       
3 T. Elmhirst and M. Golubitsky, Nilpotent Hopf bifurcations in coupled cell systems, SIAM J. Appl. Dynam. Sys., 5 (2006), 205-251.       
4 J.-M. Gambaudo, Perturbation of a Hopf bifurcation by an external time-periodic forcing, J. Diff. Eqns., 57 (1985), 172-199.       
5 M. Golubitsky, M. Nicol and I. Stewart, Some curious phenomena in coupled cell networks, J. Nonlinear Sci., 14 (2004), 207-236.       
6 M. Golubitsky, C. Postlethwaite, L.-J. Shiau and Y. Zhang, The feed-forward chain as a filter amplifier motif, in "Coherent Behavior in Neuronal Networks," (eds. K. Josic, M. Matias, R. Romo and J. Rubin), Springer Ser. Comput. Neurosci., 3, Springer, New York, (2009), 95-120.       
7 M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I, Appl. Math. Sci., 51, Springer-Verlag, New York, 1985.       
8 M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. II, Appl. Math. Sci., 69, Springer-Verlag, New York, 1988.       
9 N. J. McCullen, T. Mullin and M. Golubitsky, Sensitive signal detection using a feed-forward oscillator network, Phys. Rev. Lett., 98 (2007), 254101.
10 Y. Zhang, "Periodic Forcing of a System Near a Hopf Bifurcation Point," Ph.D Thesis, Department of Mathematics, Ohio State University, 2010.       
11 Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dynam. Sys., to appear.

Go to top