Dynamics of a delay differential equation with multiple statedependent delays
Pages: 2701  2727,
Issue 8,
August
2012
doi:10.3934/dcds.2012.32.2701 Abstract
References
Full text (2188.2K)
Related Articles
A. R. Humphries  Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 0B9, Canada (email)
O. A. DeMasi  Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 0B9, Canada (email)
F. M. G. Magpantay  Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 0B9, Canada (email)
F. Upham  Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 0B9, Canada (email)
1 
K. A. Abell, C. E. Elmer, A. R. Humphries and E. S. Van Vleck, Computation of mixed type functional differential boundary value problems, SIAM J. Appl. Dyn. Sys., 4 (2005), 755781. 

2 
W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stagestructured population growth with statedependent time delay, SIAM J. Appl. Math., 52 (1992), 855869. 

3 
A. Bellen and M. Zennaro, "Numerical Methods for Delay Differential Equations,'' Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003. 

4 
J. De Luca, N. Guglielmi, A. R. Humphries and A. Politi, Electromagnetic twobody problem: Recurrent dynamics in the presence of statedependent delay, J. Phys. A, 43 (2010), 205103, 20 pp. 

5 
J. De Luca, A. R. Humphries and S. B. Rodrigues, Finite element boundary value integration of WheelerFeynman electrodynamics, J. Comput. Appl. Math., (2012). 

6 
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.O. Walther, "Delay Equations. Functional, Complex, and Nonlinear Analysis,'' Applied Mathematical Sciences, 110, SpringerVerlag, New York, 1995. 

7 
R. Driver, Existence theory for a delaydifferential system, Contrib. Diff. Eq., 1 (1963), 317366. 

8 
M. Eichmann, "A Local Hopf Bifurcation Theorem for Differential Equations with StateDependent Delays,'' Ph.D thesis, Universität Gieß en, Germany, 2006. 

9 
K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDEBIFTOOL, ACM Trans. Math. Soft., 28 (2002), 121. 

10 
J. E. Ferrell, Selfperpetuating states in signal transduction: Positive feedback, doublenegative feedback, and bistability, Curr. Opin. Chem. Biol., 6 (2002), 140148. 

11 
C. Foley, S. Bernard and M. C. Mackey, Costeffective GCSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses, J. Theor. Biol., 238 (2006), 754763. 

12 
R. Gambell, Birds and mammals: Antarctic whales, in "Key Environments Antarctica'' (eds. W. N. Bonner and D. W. H. Walton), Pergamon Press, New York, (1985), 223241. 

13 
K. Green, B. Krauskopf and K. Engelborghs, Bistability and torus breakup in a semiconductor laser with phaseconjugate feedback, Physica D, 173 (2002), 114129. 

14 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,'' Applied Mathematical Sciences, 42, SpringerVerlag, New York, 1983. 

15 
W. Gurney, S. Blythe and R. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 1721. 

16 
I. Györi and F. Hartung, Exponential stability of a statedependent delay system, Discrete Contin. Dyn. Syst., 18 (2007), 773791. 

17 
J. Hale and S. M. Verduyn Lunel, "Introduction to FunctionalDifferential Equations,'' Applied Mathematical Sciences, 99, SpringerVerlag, New York, 1993. 

18 
F. Hartung, T. Krisztin, H.O. Walther and J. Wu, Functional differential equations with statedependent delays: Theory and applications, in "Handbook of Differential Equations: Ordinary Differential Equations,'' Vol 3 (eds. A Cañada, P. Drábek and A. Fonda), Handb. Differ. Equ., Elsevier/NorthHolland, Amsterdam, (2006), 435545. 

19 
G. Hutchinson, Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50 (1948), 221246. 

20 
Q. Hu and J. Wu, Global Hopf bifurcation for differential equations with statedependent delay, J. Diff. Eq., 248 (2010), 28012840. 

21 
T. Insperger, G. Stépán and J. Turi, Statedependent delay in regenerative turning processes, Nonlinear Dyn., 47 (2007), 275283. 

22 
Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,'' 3^{rd} edition, Applied Mathematical Sciences, 112, SpringerVerlag, New York, 2004. 

23 
J.P. Lessard, Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation, J. Diff. Eq., 248 (2010), 9921016. 

24 
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287289. 

25 
M. C. Mackey, Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors, J. Econ. Theory, 48 (1989), 497509. 

26 
J. MalletParet and R. D. Nussbaum, Global continuation and asymptotic behavior for periodic solutions of a differentialdelay equation, Ann. Mat. Pura. Appl. (4), 145 (1986), 33128. 

27 
J. MalletParet and R. D. Nussbaum, Boundary layer phenomena for differentialdelay equations with statedependent time lags, I, Arch. Rat. Mech. Anal., 120 (1992), 99146. 

28 
J. MalletParet, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional differential equations with multiple statedependent time lags, Top. Meth. Nonlin. Anal., 3 (1994), 101162. 

29 
J. MalletParet and R. D. Nussbaum, Boundary layer phenomena for differentialdelay equations with statedependent time lags. II, J. Reine Angew. Math., 477 (1996), 129197. 

30 
J. MalletParet and R. D. Nussbaum, Boundary layer phenomena for differentialdelay equations with statedependent time lags. III, J. Diff. Eq., 189 (2003), 640692. 

31 
J. MalletParet and R. D. Nussbaum, Superstability and rigorous asymptotics in singularly perturbed statedependent delaydifferential equations, J. Diff. Eq., 250 (2011), 40374084. 

32 
MATLAB R2011a, The MathWorks Inc., Natick, MA, 2011. 

33 
T. H. Price, G. S. Chatta and D. C. Dale, Effect of recombinant granulocyte colony stimulating factor on neutrophil kinetics in normal young and elderly humans, Blood, 88 (1996), 335340. 

34 
M. Santillán and M. C. Mackey, Why the lysogenic state of phage $\lambda$ is so stable: A mathematical modeling approach, Biophysical J., 86 (2004), 7584. 

35 
J. Sieber, Finding periodic orbits in statedependent delay differential equations as roots of algebraic equations, Discrete and Continuous Dynamical Systems  Series A, 32 (2012), 26072651. 

36 
H. Smith, "An Introduction to Delay Differential Equations with Applications to the Life Sciences,'' Texts in Applied Mathematics, 57, Springer, New York, 2011. 

37 
H.O. Walther, On a model for soft landing with state dependent delay, J. Dyn. Diff. Eqns., 19 (2003), 593622. 

38 
E. Wright, A nonlinear differencedifferential equation, J. Reine Angew. Math., 194 (1955), 6687. 

39 
N. Yildirim and M. C. Mackey, Feedback regulation in the lactose operon: A mathematical modeling study and comparison with experimental data, Biophysical J., 84 (2003), 28412851. 

Go to top
