`a`
Evolution Equations and Control Theory (EECT)
 

On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities
Pages: 171 - 194, Issue 1, June 2012

doi:10.3934/eect.2012.1.171      Abstract        References        Full text (459.7K)           Related Articles

Jan Prüss - Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-60120 Halle, Germany (email)
Yoshihiro Shibata - Department of Mathematics and Research Institute of Science and Engineering, JST CREST, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan (email)
Senjo Shimizu - Department of Mathematics, Shizuoka University, Shizuoka 422-8529, Japan (email)
Gieri Simonett - Department of Mathematics, Vanderbilt University, Nashville, TN 37240, United States (email)

1 D. Bothe, J. Prüss, $L_p$-theory for a class of non-Newtonian fluids, SIAM J. Math. Anal., 39 (2007), 379-421.       
2 D. M. Anderson, P. Cermelli, E. Fried, M. E. Gurtin and G. B. McFadden, General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids, J. Fluid Mech., 581 (2007), 323-370.       
3 E. DiBenedetto and A. Friedman, Conduction-convection problems with change of phase, J. Differential Equations, 62 (1986), 129-185.       
4 E. DiBenedetto and M. O'Leary, Three-dimensional conduction-convection problems with change of phase, Arch. Rational Mech. Anal., 123 (1993), 99-116.       
5 R. Denk, M. Hieber and J. Prüss, "$\mathcal R$-boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type," AMS Memoirs, 788, Providence, R.I., 2003.
6 R. Denk, M. Hieber and J. Prüss, Optimal $L^ p$-$L^ q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.       
7 K.-H. Hoffmann and V. N. Starovoitov, The Stefan problem with surface tension and convection in Stokes fluid, Adv. Math. Sci. Appl., 8 (1998), 173-183.       
8 K.-H. Hoffmann and V. N. Starovoitov, Phase transitions of liquid-liquid type with convection, Adv. Math. Sci. Appl., 8 (1998), 185-198.       
9 M. Ishii, "Thermo-Fluid Dynamics of Two-Phase Flow," Collection de la Direction des Etudes et Recherches d'Electricte de France, Paris, 1975.
10 M. Ishii and H. Takashi, "Thermo-Fluid Dynamics of Two-Phase Flow," Springer, New York, 2006.       
11 M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Annalen, to appear.
12 Y. Kusaka, On a limit problem of the Stefan problem with surface tension in a viscous incompressible fluid flow, Adv. Math. Sci. Appl., 12 (2002), 665-683.       
13 Y. Kusaka and A. Tani, On the classical solvability of the Stefan problem in a viscous incompressible fluid flow, SIAM J. Math. Anal., 30 (1999), 584-602 (electronic).       
14 Y. Kusaka and A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow, Math. Models Methods Appl. Sci., 12 (2002), 365-391.       
15 M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions, Math. Nachr., to appear.
16 J. Prüss, Maximal regularity for evolution equations in $L_p$-spacess, Conf. Sem. Mat. Univ. Bari, 285 (2003), 1-39.       
17 J. Prüss and S. Shimizu, Incompressible two-phase flows with phase transition: Non-equal densities, submitted.
18 J. Prüss and G. Simonett, Maximal regularity for evolution equations in weighted $L_p$-spaces, Archiv Math., 82 (2004), 415-431.       
19 J. Prüss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension, SIAM J. Math. Anal., 40 (2008), 675-698.       
20 J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension, Interfaces & Free Bound, 12 (2010), 311-345.       
21 J. Prüss and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension, Progr. Nonlin. Diff. Eqns. Appl., 80 (2011), 507-540.       
22 J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension, arXiv:1101.3763, submitted.
23 Y. Shibata and S. Shimizu, Resolvent estimates and maximal regularity of the interface problem for the Stokes system in a bounded domain, preprint, 2009.       
24 N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-capillary convection, Japan J. Mech., 21 (1995), 1-41.       
25 H. Triebel, "Theory of Function Spaces II," Birkhäuser Verlag, Basel, 1992.       

Go to top