`a`
Journal of Modern Dynamics (JMD)
 

Partially hyperbolic diffeomorphisms with compact center foliations
Pages: 747 - 769, Issue 4, October 2011

doi:10.3934/jmd.2011.5.747      Abstract        References        Full text (292.0K)           Related Articles

Andrey Gogolev - Department ofMathematical Sciences, The State University of New York, Binghamton, NY 13902, United States (email)

1 V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems, Phys. Rep., 75 (1981), 287-325.       
2 D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy," Thesis, 2011.
3 C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.       
4 R. Bowen, Periodic points and measures for axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.       
5 M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in "Modern Dynamical Systems and Applications," 307-312, Cambridge Univ. Press, Cambridge, 2004.       
6 D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541-580.       
7 A. Candel and L. Conlon, "Foliations. I," Graduate Studies in Mathematics, 23, American Mathematical Society, Providence, RI, 2000.       
8 P. Carrasco, "Compact Dynamical Foliations," Thesis, 2010.
9 Y. Coudene, Pictures of hyperbolic dynamical systems, Notices Amer. Math. Soc., 53 (2006), 8-13.       
10 R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact, Topology, 16 (1977), 13-32.       
11 D. B. A. Epstein, Periodic flows on three-manifolds, Ann. of Math. (2), 95 (1972), 66-82.       
12 D. B. A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier (Grenoble), 26 (1976), 265-282.       
13 D. B. A. Epstein and E. Vogt, A counterexample to the periodic orbit conjecture in codimension $3$, Ann. of Math. (2), 108 (1978), 539-552.       
14 J. Franks, Anosov diffeomorphisms, in "1970 Global Analysis" (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 61-93.       
15 K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 21 (2001), 801-806.       
16 J. G. Hocking and G. S. Young, "Topology," Second edition, Dover Publications, Inc., New York, 1988.       
17 R. Langevin, A list of questions about foliations, in "Differential Topology, Foliations, and Group Actions" (Rio de Janeiro, 1992), Contemp. Math., 161, Amer. Math. Soc., Providence, RI, (1994), 59-80.       
18 D. Montgomery, Pointwise periodic homeomorphisms, Amer. J. Math., 59 (1937), 118-120.       
19 S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761-770.       
20 F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in "Partially Hyperbolic Dynamics, Laminations, and Teichmüler Flow," Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, (2007), 35-87.
21 F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, private communication.
22 D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5-14.       
23 E. Vogt, Foliations of codimension 2 with all leaves compact, Manuscripta Math., 18 (1976), 187-212.       

Go to top