Partially hyperbolic diffeomorphisms with compact center
foliations
Pages: 747  769,
Issue 4,
October
2011
doi:10.3934/jmd.2011.5.747 Abstract
References
Full text (292.0K)
Related Articles
Andrey Gogolev  Department ofMathematical Sciences, The State University of New York, Binghamton, NY 13902, United States (email)
1 
V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems, Phys. Rep., 75 (1981), 287325. 

2 
D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy," Thesis, 2011. 

3 
C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3manifolds, Topology, 44 (2005), 475508. 

4 
R. Bowen, Periodic points and measures for axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377397. 

5 
M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3manifolds with commutative fundamental group, in "Modern Dynamical Systems and Applications," 307312, Cambridge Univ. Press, Cambridge, 2004. 

6 
D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541580. 

7 
A. Candel and L. Conlon, "Foliations. I," Graduate Studies in Mathematics, 23, American Mathematical Society, Providence, RI, 2000. 

8 
P. Carrasco, "Compact Dynamical Foliations," Thesis, 2010. 

9 
Y. Coudene, Pictures of hyperbolic dynamical systems, Notices Amer. Math. Soc., 53 (2006), 813. 

10 
R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact, Topology, 16 (1977), 1332. 

11 
D. B. A. Epstein, Periodic flows on threemanifolds, Ann. of Math. (2), 95 (1972), 6682. 

12 
D. B. A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier (Grenoble), 26 (1976), 265282. 

13 
D. B. A. Epstein and E. Vogt, A counterexample to the periodic orbit conjecture in codimension $3$, Ann. of Math. (2), 108 (1978), 539552. 

14 
J. Franks, Anosov diffeomorphisms, in "1970 Global Analysis" (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 6193. 

15 
K. Hiraide, A simple proof of the FranksNewhouse theorem on codimensionone Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 21 (2001), 801806. 

16 
J. G. Hocking and G. S. Young, "Topology," Second edition, Dover Publications, Inc., New York, 1988. 

17 
R. Langevin, A list of questions about foliations, in "Differential Topology, Foliations, and Group Actions" (Rio de Janeiro, 1992), Contemp. Math., 161, Amer. Math. Soc., Providence, RI, (1994), 5980. 

18 
D. Montgomery, Pointwise periodic homeomorphisms, Amer. J. Math., 59 (1937), 118120. 

19 
S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761770. 

20 
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in "Partially Hyperbolic Dynamics, Laminations, and Teichmüler Flow," Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, (2007), 3587. 

21 
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, private communication. 

22 
D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 514. 

23 
E. Vogt, Foliations of codimension 2 with all leaves compact, Manuscripta Math., 18 (1976), 187212. 

Go to top
