Delay equations modeling the effects of phasespecific drugs and immunotherapy on proliferating tumor cells
Pages: 241  257,
Issue 2,
April
2012
doi:10.3934/mbe.2012.9.241 Abstract
References
Full text (783.2K)
Related Articles
Maria Vittoria Barbarossa  Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany (email)
Christina Kuttler  Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany (email)
Jonathan Zinsl  Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany (email)
1 
J. AlOmari and S. Gourley, Dynamics of a stagestructured population model incorporating a statedependent maturation delay, Nonlinear Analysis: Real World Applications 6 (2005), 1333. 

2 
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, "Molecular Biology of the Cell," 5^{th} edition, Taylor & Francis Ltd., New York, 2007. 

3 
A. Bellen and M. Zennaro, "Numerical Methods for Delay Differential Equations," Clarendon Press, New York, 2003. 

4 
S. P. Blythe, R. M. Nisbet and W. S. C. Gurney, The dynamics of population models with distributed maturation periods, Theoretical Population Biology, 25 (1984), 289311. 

5 
G. Bocharov and K. P. Hadeler, Structured population models, conservation laws, and delay equations, Journal of Differential Equations, 168 (2000), 212237. 

6 
M. Chaplain and A. Matzavinos, Mathematical modeling of spatiotemporal phenomena in tumor immunology, in "Tutorials in Mathematical Biosciences. III," Lecuture Notes in Math., 1872, Berlin, (2006), 131183. 

7 
K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations, Funkcialaj Ekvacioj, 29 (1986), 7790. 

8 
G. M. Cooper and R. E. Hausman, "The Cell: A Molecular Approach,'' ASM Press, Washington, 1997. 

9 
A. d'Onofrio, A general framework for modeling tumorimmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D, 208 (2005), 220235. 

10 
A. d'Onofrio, Tumorimmune system interaction: Modelling the tumorstimulated proliferation of effectors and immunotherapy, Mathematical Models and Methods in Applied Science, 16 (2006), 13751401. 

11 
A. d'Onofrio, F. Gatti, P. Cerrai and L. Freschi, Delayinduced oscillatory dynamics of tumourimmune system interaction, Mathematical and Computer Modelling, 51 (2010), 572591. 

12 
J. Dyson, R. VillellaBressan and G. Webb, Asynchronous exponential growth in an age structured population of proliferating and quiescent cells, Deterministic and Stochastic Modeling of Biointeraction (West Lafayette, IN, 2000), Mathematical Biosciences, 177/178 (2002), 7383. 

13 
J. Dyson, R. VillellaBressan and G. Webb, A spatial model of tumor growth with cell age, cell size, and mutation of cell phenotypes, Mathematical Modelling of Natural Phenomena, 2 (2007), 69100. 

14 
W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 1721. 

15 
Y. Kuang, "Delay Differential Equations: With Applications in Population Dynamics,'' Academic Press, New York, 2003. 

16 
W. Liu, T. Hillen and H. Freedman, A mathematical model for $M$phase specific chemotherapy including the $G_0$phase and immunoresponse, Mathematical Bioscience and Engineering, 4 (2007), 239259. 

17 
H. Lodish et al., "Molecular Cell Biology,'' 3rd Ed. Scientific American Books , New York, 1995. 

18 
N. MacDonald, "Biological Delay Systems: Linear Stability Theory,'' Cambridge University Press, 1989. 

19 
R. Nisbet and W. Gurney, The systematic formulation of population models for insects with dynamically varying instar duration, Theoretical Population Biology, 23 (1983), 114135. 

20 
T. Roose, S. J. Chapman and P. K. Maini, Mathematical models of avascular tumor growth, SIAM Review, 49 (2007), 179208. 

21 
R. A. SantiagoMozos, I. G. Khan and M. Madden, Revealing the origin and nature of drug resistance of dynamic tumour systems, International Journal of Knowledge Discovery in Bioinformatics, 1 (2010), 2653. 

22 
F. R. Sharpe and A. J. Lotka, A problem in age distribution, Philosophical Magazine Series 6, 21 (1911), 435438. 

23 
H. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, Rhode Island, 1995. 

24 
H. Smith, "An Introduction to Delay Differential Equations with Applications to the Life Sciences,'' Springer, New York, 2011. 

25 
U. Veronesi and G. Quaranta, "Un Male Curabile,'' Mondadori Editore, Milano, 1986. 

26 
M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth, Journal of Mathematical Biology, 47 (2003), 270294. 

27 
G. Webb, "Theory of Nonlinear AgeDependent Population Dynamics,'' Monographs and Textbooks in Pure and Applied Mathematics, 1985. 

Go to top
