Mathematical Biosciences and Engineering (MBE)

Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates
Pages: 215 - 239, Issue 2, April 2012

doi:10.3934/mbe.2012.9.215      Abstract        References        Full text (399.0K)           Related Articles

Fazal Abbas - Dept. Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada (email)
Rangarajan Sudarsan - Dept. Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada (email)
Hermann J. Eberl - Dept. Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada (email)

1 F. Abbas and H. J. Eberl, Analytical substrate flux approximation for the Monod boundary value problem, Appl. Math. Comp., 218 (2011), 1484-1494.
2 J. P. Boltz, E. Morgenroth, D. Brockmann, C. Bott, W. J. Gellner and P. A. Vanrolleghem, Critical components of biofilm models for engineering practise, in "Proceedings Conf. Water Env. Fed. Tech. Exh. Conf. WEFTEC 2010," (2010), 1072-1098.
3 J. D. Bryers, Biofilm formation and chemostat dynamics: Pure and mixed culture considerations, Biotech. Bioeng., 26 (1984), 948-958.
4 S. Carl and S. Heikkilä, "Nonlinear Differential Equations in Ordered Spaces," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 111, Chapman & Hall/CRC, Boca Raton, FL, 2000.       
5 M. A. S. Chaudhry and S. A. Beg, A review on the mathematical modeling of biofilm processes: Advances in fundamentals of biofilm modeling, Chem. Eng. Technol., 21 (1998), 701-710.
6 B. M. Chen-Charpentier and H. V. Kojouharov, Numerical simulation of dual-species biofilms in porous media, Appl. Num. Math., 47 (2003), 377-389.       
7 B. M. Chen-Charpentier and H. V. Kojouharov, Mathematical modeling of bioremediation of trichloroenthylene in aquifers, Comp. Math. Appls., 56 (2008), 645-656.       
8 N. Derlon, A. Massé, R. Escudié, N. Bernet and E. Paul, Stratification in the cohesion of biofilms grown under various environmental conditions, Water Research, 42 (2008), 2102-2110.
9 B. C. Dunsmore, A. Jacobsen, L. Hall-Stoodley, C. J. Bass, H. M. Lappin-Scott and P. Stoodley, The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms, J. Ind. Microbiol. Biotech., 29 (2002), 347-353.
10 H. Horn, T. R. Neu and M. Wulkow, Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques, Wat. Sci. Tech., 43 (2001), 121-127.
11 J. C. Kissel, P. L. McCarty and R. L. Street, Numerical simulation of mixed-culture biofilm, ASCE J. Env. Eng., 110 (1984), 393-411.
12 I. Klapper and B. Szomolay, An exclusion principle and the importance of mobility for a class of biofilm models, Bull. Math. Biol., 73 (2011), 2213-2230.
13 H. Kuchling, "Physik," 18th edition, VEB Fachbuchverlag Leipzig, 1987.
14 Z. Lewandowski and H. Beyenal, "Fundamentals of Biofilm Research," CRC Press, 2007.
15 A. Masic, J. Bengtsson and M. Christensson, Measuring and modeling the oxygen profile in a nitrifying moving bed biofilm reactor, Math. Biosc., 227 (2010), 1-11.       
16 A. Masic and H. J. Eberl, Persistence in a single species CSTR model with suspended flocs and wall attached biofilms, Bull. Math. Biol., to appear.
17 E. Morgenroth, Detachment: An often-overlooked phenomenon in biofilm research and modelling, in "Biofilms in Wastewater Treatment" (eds. S. Wuertz et al), IWA Publishing, (2003), 246-290.
18 N. Muhammad and H. J. Eberl, Open MP parallelization of a Mickens time-integration scheme for a mixed-culture biofilm model and its performance on multi-core and multi-processor computers, LNCS, 5976 (2010), 180-195.
19 N. Muhammad and H. J. Eberl, Model parameter uncertainties in a dual-species biofilm competition model affect ecological output parameters much stronger than morphological ones, Math. Biosc., 233 (2011), 1-18.
20 B. R. Munson, D. F. Young and T. H. Okiishi, "Fundamentals of Fluid Mechanics," John Wiley & Sons, 1990.
21 N. C. Overgaard, Application of variational inequalities to the moving-boundary problem in a fluid model for biofilm growth, Nonlin. Analysis, 70 (2009), 3658-3664.       
22 E. Paramonova, O. J. Kalmykowa, H. C. van der Mei, H. J. Busscher and P. K. Sharma, Impact of hydrodynamics on oral biofilm strength, J. Dent. Res., 88 (2009), 922-926.
23 B. M. Peyton and W. G. Characklis, A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment, Biotech. Bioeng., 41 (1982), 728-735.
24 L. A. Pritchett and J. D. Dockery, Steady state solutions of a one-dimensional biofilm, Math. Comp. Model., 33 (2001), 255-263.
25 B. E. Rittmann and P. L. McCarty, Model of steady state biofilm kinetics, Biotech. Bioeng., 22 (1980), 2343-2357.
26 B. E. Rittmann, The effect of shear stress on biofilm loss rate, Biotech. Bioeng., 24 (1982), 501-506.
27 B. E. Rittmann, A. O. Schwarz, H. J. Eberl, E. Morgenroth, J. Perez, M. C. M. van Loosdrecht and O. Wanner, Results from the multi-species benchmark problem (BM3) using one-dimensional models, Wat. Sci. & Tech., 49 (2004), 163-168.
28 B. E. Rittmann, D. Stilwell and A. Ohashi, The transient-state, multiple-species biofilm model for biofiltration processes, Water Research, 36 (2002), 2342-2356.
29 A. Rochex, A. Massé, R. Escudié, J. J. Godon and N. Bernet, Influence of abrasion on biofilm detachment: Evidence for stratification of the biofilm, J. Ind. Microbiol. Biotech., 36 (2009), 467-470.
30 P. Stoodley, R. Cargo, C. J. Rupp, S. Wilson and I. Klapper, Biofilm material properties as related to shear-induced deformation and detachment phenomena, J. Ind. Microbiol. Biotech., 29 (2002), 361-367.
31 B. Szomolay, Analysis of a moving boundary value problem arising in biofilm modelling, Math. Meth. Appl. Sci., 31 (2008), 1835-1859.       
32 U. Telgmann, H. Horn and E. Morgenroth, Influence of growth history on sloughing and erosion from biofilms, Water Research, 38 (2004), 3671-3684.
33 L. Tijhuis, M. C. M. van Loosdrecht and J. J. Heijnen, Dynamics of biofilm detachment in biofilm airlift suspension reactors, Biotech. Bioeng., 45 (1995), 481-487.
34 M. M. Trulear and W. G. Characklis, Dynamics of biofilm processes, J. Water Pollut. Control Fed., 54 (1982), 1288-1301.
35 W. Walter, "Gewöhnliche Differentialgleichungen," 7th edition, Springer-Verlag, 2000.
36 O. Wanner, H. Eberl, E. Morgenroth, D. Noguera, C. Picioreanu, B. Rittmann and M. van Loosdrecht, "Mathematical Modeling of Biofilms," IWA Publishing, 2006.
37 O. Wanner and W. Gujer, A multispecies biofilm model, Biotech. Bioeng., 28 (1986), 314-328.

Go to top