`a`
Mathematical Biosciences and Engineering (MBE)
 

Effect of branchings on blood flow in the system of human coronary arteries
Pages: 199 - 214, Issue 1, January 2012

doi:10.3934/mbe.2012.9.199      Abstract        References        Full text (1169.5K)                  Related Articles

Benchawan Wiwatanapataphee - Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand (email)
Yong Hong Wu - Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia (email)
Thanongchai Siriapisith - Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand (email)
Buraskorn Nuntadilok - Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand (email)

1 V. Fuster, R. W. Alexander and R. A. O'Rourke, "Hurst's the Heart," 10th edition, McGraw-Hill, 2001.
2 L. Ai and K. Vafai, A coupling model for macromolecule transport in a stenosed arterial wall, Int. J. Heat Mass Transfer, 49 (2006), 1568-1591.
3 G. Anastasi, G. Cutroneo, F. Tomasello, S. Lucerna, A. Vitetta, P. Bramanti, P. Di Bella, A. Parenti, A. Porzionato, V. Macchi and R. De Caro, In vivo basal ganglia volumetry through application of NURBS models to MR images, Neuroradiology, 48 (2006), 338-345.
4 F. G. Basombrío, E. A. Dari, G. C. Buscaglia and R. A. Feijóo, Numerical experiments in complex hemodynamic flows. Non-Newtonian effects, XI Congress on Numerical Methods and their Applications (San Carlos de Bariloche, 2000), Int. J. of Computational Fluid Dynamics, 16 (2002), 231-246.       
5 C. Bertolotti and V. Deplano, Three-dimensional numerical simulations of flow through a stenosed coronary bypass, J. Biomech., 33 (2000), 1011-1022.
6 J.-J. Chiu and S. Chien, Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives, Physiological Review, 91 (2011), 327-387.
7 C. R. Ethier, D. A. Steinman, X. Zhang, S. R. Karpik and M. Ojha, Flow waveform effects on end-to-side anastomotic patterns, J. Biomech., 31 (1998), 609-617.
8 D. Y. Fei, J. D. Thomas and S. E. Rittgers, The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: A numerical model study, J. Biomech Eng., 116 (1994), 331-316.
9 Z. J. Huang and J. M. Tarbell, Numerical simulation of mass transfer in porous media blood vessel walls, Am. J. Physiol Heart Circ Physiol., (1997), 464-477.
10 J. Chen and X. Y. Lu, Numerical investigation of non-Newtonian blood flow in a bifurcation model with non-planar branch, J. Biomech., 37 (2004), 1899-1911.
11 B. M. Johnston, P. R. Johnstona, S. Corney and D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: Steady state simulations, J. Biomech., 34 (2004), 709-720.
12 G. Karner and K. Perktold, Effect of endothelial injury and increased blood flow pressure on albumin accumulation in the arterial wall: A numerical study, J Biomech., 33 (2000), 709-715.
13 D. K. Stangeby and E. R. Ethier, Computational analysis of coupled blood-wall arterial LDL transport, J. Biomech Eng., 124 (2002), 1-8.
14 N. Kowalczyk and J. D. Mace, "Radiographic Pathology for Technologists," MOSBY Elsevier, United States, 2009.
15 Y. Papaharilaou, D. J. Doorly and S. J. Sherwin, The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anatomosis, J. Boimech., 35 (2002), 1225-1239.
16 A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in "Handbook of Numerical Analysis" (eds. P. G. Ciarlet and J.-L. Lions), Vol. XII, North-Holland, Amsterdam, (2004), 3-127.       
17 N. H. Staalsen, M. Ulrich, W. Y. Kim, E. M. Pedersen, T. V. How and J. M. Hasenkam, In vivo analysis and three-dimensional visualization of blood flow patterns at vascular end-to-side anastomoses, Eur. J. Vasc Endovasc Surg., 10 (1995), 168-181.
18 S. Tada and J. M. Tarbell, Interstital flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells, Am. J. Physiol Heart Circ. Physiol., 278 (2000), 1589-1597.
19 D. Tang, C. Yang, S. Kobayashi and D. N. Ku, Steady flow and wall compression in stenotic arteries: A three-dimensional thick-wall model with fluid-wall interactions, J. Biomech Eng., 123 (2001), 548-557.
20 R. C. Ward, M. W. Yambert, R. J. Toedte, N. B. Munro, C. E. Easterly, E. P. Difilippo and D. C. Stallings, Creating a human phantom for the virtual human program, Stud. Health Technol. Inform., 70 (2000), 368-374.
21 B. Wiwatanapataphee, D. Poltem, Y. H. Wu and Y. Lenbury, Simulation of pulsatile flow of blood in stenosed coronary artery bypass with graft, Math Biosci Eng., 3 (2006), 371-383.       
22 F. G. Basombrío, E. A. Dari, G. C. Buscaglia and R. A. Feijóo, Numerical experiments in complex hemodynamic flows. Non-Newtonian effects, Int. J. of Computational Fluid Dynamics, 16 (2002), 231-246.
23 C. Bertolotti and V. Deplano, Three-dimensional numerical simulations of flow through a stenosed coronary bypass, J. Biomech., 33 (2000), 1011-1022.
24 J.-J. Chiu and S. Chien, Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives Physiological Review, 91 (2011), 327-387.
25 C. R. Ethier, D. A. Steinman, X. Zhang, S. R. Karpik and M. Ojha, Flow waveform effects on end-to-side anastomotic patterns, J. Biomech., 31 (1998), 609-617.
26 D. Y. Fei, J. D. Thomas and S. E. Rittgers, The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: A numerical model study, J. Biomech Eng., 116 (1994), 331-316.
27 Z. J. Huang and J. M. Tarbell, Numerical simulation of mass transfer in porous media blood vessel walls, Am. J. Physiol Heart Circ. Physiol., (1997), 464-477.
28 J. Chen and X. Y. Lu, Numerical investigation of non-Newtonian blood flow in a bifurcation model with non-planar branch, J. Biomech., 37 (2004), 1899-1911.
29 B. M. Johnston, P. R. Johnstona, S. Corney and D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: Steady state simulations, J. Biomech., 34 (2004), 709-720.
30 G. Karner and K. Perktold, Effect of endothelial injury and increased blood flow pressure on albumin accumulation in the arterial wall: A numerical study, J. Biomech., 33 (2000), 709-715.
31 D. K. Stangeby and E. R. Ethier, Computational analysis of coupled blood-wall arterial LDL transport, J. Biomech Eng., 124 (2002), 1-8.
32 N. Kowalczyk and J. D. Mace, "Radiographic Pathology for Technologists," MOSBY Elsevier, United States, 2009.
33 Y. Papaharilaou, D. J. Doorly and S. J. Sherwin, The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anatomosis, J. Boimech., 35 (2002), 1225-1239.
34 A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in "Handbook of Numerical Analysis" (eds. P. G. Ciarlet and J.-L. Lions), Elsevier, Amsterdam, 2004.
35 N. H. Staalsen, M. Ulrich, W. Y. Kim, E. M. Pedersen, T. V. How and J. M. Hasenkam, In vivo analysis and three-dimensional visualization of blood flow patterns at vascular end-to-side anastomoses, Eur. J. Vasc. Endovasc. Surg., 10 (1995), 168-181.
36 S. Tada and J. M. Tarbell, Interstital flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells, Am. J. Physiol Heart Circ. Physiol., 278 (2000), 1589-1597.
37 D. Tang, C. Yang, S. Kobayashi and D. N. Ku, Steady flow and wall compression in stenotic arteries: A three-dimensional thick-wall model with fluid-wall interactions, J. Biomech Eng., 123 (2001), 548-557.
38 R. C. Ward, M. W. Yambert, R. J. Toedte, N. B. Munro, C. E. Easterly, E. P. Difilippo and D. C. Stallings, Creating a human phantom for the virtual human program, Stud. Health Technol. Inform., 70 (2000), 368-374.
39 B. Wiwatanapataphee, D. Poltem, Y. H. Wu and Y. Lenbury, Simulation of pulsatile flow of blood in stenosed coronary artery bypass with graft, Math Biosci Eng., 3 (2006), 371-383.

Go to top