`a`
Mathematical Biosciences and Engineering (MBE)
 

Assessing the effect of non-pharmaceutical interventions on containing an emerging disease
Pages: 147 - 164, Issue 1, January 2012

doi:10.3934/mbe.2012.9.147      Abstract        References        Full text (238.2K)           Related Articles

Zi Sang - School of Automation, Nanjing University of Science and Technology, Nanjing, 210094, China (email)
Zhipeng Qiu - Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, 210094, China (email)
Xiefei Yan - School of Automation, Nanjing University of Science and Technology, Nanjing, 210094, China (email)
Yun Zou - School of Automation, Nanjing University of Science and Technology, Nanjing, 210094, China (email)

1 M. E. Alexander, S. M. Moghadas, G. Röst and J. Wu, A delay differential model for pandemic influenza with antiviral treatment, Bull. Math. Biol., 70 (2008), 382-397.       
2 M. E. Alexander, C. Bowman, Z. Feng, M. Gardam, S. Moghadas, G. Rost, J. Wu and P. Yan, Emergence of drug-resistance: Dynamical implications for pandemic influenza, Proc. R. Soc. B., 274 (2007), 1675-1684.
3 J. Arino and P. van den Driessche, A multi-city epidemic model, Math. Popul. Studies, 10 (2003), 175-193.       
4 J. Arino and P. van den Driessche, The basic reproduction number in a multi-city compartmental epidemic model, in "Positive Systems" (Rome, 2003), Lect. Notes Contr. Inf. Sci., 294, Springer, Berlin, (2003), 135-142.       
5 J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemics model with spatial dynamics, Math. Biosci., 206 (2007), 46-60.       
6 F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Texts in Applied Mathematics, 40, Springer-Verlag, New York, 2001.       
7 C. Castillo-Chavez and A. Yakubu, Dispersal disease and life-history evolution, Math. Biosci., 173 (2001), 35-53.       
8 G. Chowell, P. W. Fenimore, M. A. Castillo-Garsow and C. Castillo-Chavez, SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism, J. Theor. Biol., 224 (2003), 1-8.       
9 O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation," Wiley Series in Mathematical and Computational Biology, Wiley, Chichester, 2000.
10 Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation, Mathematical Biosciences and Engineering, 4 (2007), 675-686.       
11 Z. Feng, Y. Yang, D. Xu, P. Zhang, M. McCauley and J. Glasser, Timely identification of optimal control strategies for emerging infectious diseases, J. Theor. Biol., 259 (2009), 165-171.
12 J. Glasser, D. Taneri, Z. Feng, J. H. Chuang, P. Tull, W. Thompson, M. M. McCauley and J. Alexander, Evaluation of targeted influenza vaccination strategies via population modeling, PLoS One, 5 (2010), e12777.
13 A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. Wu and B. M. Sahai, Modeling strategies for controlling SARS outbreaks, Proc. R. Soc. B., 271 (2004), 2223-2232.
14 H. W. Hethcote, A thousand and one epidemic models, in "Frontiers in Mathematical Biology" (ed. S. A. Levin), Lecture Notes in Biomathematics, 100, Springer-Verlag, Berlin-Heidelberg-New York, (1994), 504-515.
15 H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.       
16 M. Lipsitch, T. Cohen, M. Muray and B. R. Levin, Antiviral resistance and the control of pandemic influenza, PLoS Med., 4 (2007), 111-120.
17 J. O. Lloyd-Smith, A. P. Galvani and W. M. Getz, Curtailing transmission of severe acute respiratory syndrome within a community and its hospital, Proc. R. Soc. B., 170 (2003), 1979-1989.
18 I. M. Longini, M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633.
19 J. M. McCaw and J. McVernon, Prophylaxis or treatment? Optimal use of an antiviral stockpile during an influenza pandemic, Math. Biosci., 209 (2007), 336-360.       
20 C. N. Podder, A. B. Gumel, C. Bowman and R. G. McLeod, Mathematical study of the impact of quarantine, isolation and vaccination in curtailing an epidemic, Journal of Biological Sciences, 15 (2007), 1-18.
21 Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment, Bull. Math. Biol., 72 (2010), 1-33.       
22 R. R. Regoes and S. Bonhoeffer, Emergence of drug-resistant influenza virus: Population dynamical considerations, Science, 312 (2006), 389-391.
23 S. Ruan, W. Wang and S. A. Levin, The effect of global travel on the spread of SARS, Math. Biosci. Eng., 3 (2006), 205-218.       
24 A. R. Tuite, D. N. Fisman, J. C. Kwong and A. L. Greer, Optimal pandemic influenza vaccine allocation strategies for the Canadian population, PLoS One, 5 (2010), e10520.
25 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.       
26 W. Wang and X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112.       
27 P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, Math. Biosci., 224 (2010), 43-52.       

Go to top