Bernoulli equilibrium states for surface diffeomorphisms
Pages: 593  608,
Issue 3,
July
2011
doi:10.3934/jmd.2011.5.593 Abstract
References
Full text (257.9K)
Related Articles
Omri M. Sarig  Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot, Israel (email)
1 
R. L. Adler and B. Weiss, "Similarity of Automorphisms of the Torus," Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. 

2 
R. L. Adler, P. Shields and M. Smorodinsky, Irreducible Markov shifts, The Annals of Math. Statistics, 43 (1972), 10271029. 

3 
L. Barreira and Y. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents," Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007. 

4 
R. Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms, Math. Systems Theory, 8 (1974/75), 289294. 

5 
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer Verlag, BerlinNew York, 1975. 

6 
J. Buzzi, Maximal entropy measures for piecewise affine surface homeomorphisms, Ergodic Theory Dynam. Systems, 29 (2009), 17231763. 

7 
J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Th. & Dynam. Syst., 23 (2003), 13831400. 

8 
B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, (Russian), Dokl. Akad. Nauk SSSR, 192 (1970), 963965; English Transl. in Soviet Math. Dokl., 11 (1970), 744747. 

9 
B. P. Kitchens, "Symbolic Dynamics. OneSided, TwoSided and Countable State Markov Shifts," Universitext, SpringerVerlag, Berlin, 1998. 

10 
F. Ledrappier, Propriétés ergodiques de mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math. No., 59 (1984), 163188. 

11 
F. Ledrappier and L.S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509539. 

12 
S. Newhouse, Continuity properties of entropy, Annals of Math. (2), 129 (1989), 215235; Errata in Annals of Math., 131 (1990), 409410. 

13 
D. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts, Adv. in Math., 5 (1970), 349364. 

14 
D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Adv. in Math., 5 (1970), 339348. 

15 
D. Ornstein, Imbedding Bernoulli shifts in flows, in "1970 Contributions to Ergodic Theory and Probability" (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970), 178218, Springer, Berlin, 1970. 

16 
D. Ornstein and N. A. Friedman, On isomorphism of weak Bernoulli transformations, Adv. in Math., 5 (1970), 365394. 

17 
D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems, 18 (1998), 441456. 

18 
W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 5566. 

19 
Y. Pesin, Characteristic Ljapunov exponents and smooth ergodic theory, Uspehi, Mat. Nauk, 32 (1977), 55112, 287. 

20 
M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math., 17 (1974), 380391. 

21 
R. Ruelle, A measure associated with axiomA attractors, Amer. J. Math., 98 (1976), 619654. 

22 
O. M. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math., 121 (2001), 285311. 

23 
O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, submitted. 

24 
P. Walters, Ruelle's operator theorem and gmeasures, Trans. Amer. Math. Soc., 214 (1975), 375387. 

25 
P. Walters, "Ergodic Theory, Introductory Lectures," Lecture Notes in Mathematics, 458, SpringerVerlag, BerlinNew York, 1975. 

26 
P. Walters, Regularity conditions and Bernoulli properties of equilibrium states and gmeasures, J. London Math. Soc. (2), 71 (2005), 379396. 

Go to top
