Journal of Modern Dynamics (JMD)

Bernoulli equilibrium states for surface diffeomorphisms
Pages: 593 - 608, Issue 3, July 2011

doi:10.3934/jmd.2011.5.593      Abstract        References        Full text (257.9K)           Related Articles

Omri M. Sarig - Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot, Israel (email)

1 R. L. Adler and B. Weiss, "Similarity of Automorphisms of the Torus," Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970.       
2 R. L. Adler, P. Shields and M. Smorodinsky, Irreducible Markov shifts, The Annals of Math. Statistics, 43 (1972), 1027-1029.       
3 L. Barreira and Y. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents," Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.       
4 R. Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms, Math. Systems Theory, 8 (1974/75), 289-294.       
5 R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer Verlag, Berlin-New York, 1975.       
6 J. Buzzi, Maximal entropy measures for piecewise affine surface homeomorphisms, Ergodic Theory Dynam. Systems, 29 (2009), 1723-1763.       
7 J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Th. & Dynam. Syst., 23 (2003), 1383-1400.       
8 B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, (Russian), Dokl. Akad. Nauk SSSR, 192 (1970), 963-965; English Transl. in Soviet Math. Dokl., 11 (1970), 744-747.       
9 B. P. Kitchens, "Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts," Universitext, Springer-Verlag, Berlin, 1998.       
10 F. Ledrappier, Propriétés ergodiques de mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math. No., 59 (1984), 163-188.       
11 F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539.       
12 S. Newhouse, Continuity properties of entropy, Annals of Math. (2), 129 (1989), 215-235; Errata in Annals of Math., 131 (1990), 409-410.       
13 D. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts, Adv. in Math., 5 (1970), 349-364.       
14 D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Adv. in Math., 5 (1970), 339-348.       
15 D. Ornstein, Imbedding Bernoulli shifts in flows, in "1970 Contributions to Ergodic Theory and Probability" (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970), 178-218, Springer, Berlin, 1970.       
16 D. Ornstein and N. A. Friedman, On isomorphism of weak Bernoulli transformations, Adv. in Math., 5 (1970), 365-394.       
17 D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems, 18 (1998), 441-456.       
18 W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66.       
19 Y. Pesin, Characteristic Ljapunov exponents and smooth ergodic theory, Uspehi, Mat. Nauk, 32 (1977), 55-112, 287.       
20 M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math., 17 (1974), 380-391.       
21 R. Ruelle, A measure associated with axiom-A attractors, Amer. J. Math., 98 (1976), 619-654.       
22 O. M. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math., 121 (2001), 285-311.       
23 O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, submitted.
24 P. Walters, Ruelle's operator theorem and g-measures, Trans. Amer. Math. Soc., 214 (1975), 375-387.       
25 P. Walters, "Ergodic Theory, Introductory Lectures," Lecture Notes in Mathematics, 458, Springer-Verlag, Berlin-New York, 1975.       
26 P. Walters, Regularity conditions and Bernoulli properties of equilibrium states and g-measures, J. London Math. Soc. (2), 71 (2005), 379-396.       

Go to top