`a`
Communications on Pure and Applied Analysis (CPAA)
 

Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis
Pages: 339 - 364, Issue 1, January 2012

doi:10.3934/cpaa.2012.11.339      Abstract        References        Full text (486.1K)                  Related Articles

Norikazu Saito - Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan (email)

1 R. A. Adams and J. Fournier, "Sobolev Spaces,'' 2nd edition, Academic Press, 2003.       
2 S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,'' 3rd edition, Springer, 2008.       
3 K. Baba and T. Tabata, On a conservative upwind finite-element scheme for convective diffusion equations, RAIRO Anal. Numér., 15 (1981), 3-25.       
4 M. Boman, Estimates for the $L_2$-projection onto continuous finite element spaces in a weighted $L_p$-norm, BIT Numer. Math., 46 (2006), 249-260.       
5 A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), 169-205.       
6 P. G. Ciarlet and R. A. Raviart, General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods, Arch. Rational Mech. Anal., 46 (1972), 177-199.       
7 M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp., 48 (1987), 521-532.       
8 J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in $L_p$ and $W_p^1$ of the $L_2$-projection into finite element function spaces, Numer. Math., 23 (1975), 193-197.       
9 Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 40 (2009), 211-256.       
10 Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., 47 (2008/09), 386-408.       
11 M. Efendiev, E. Nakaguchi and W. L. Wendland, Dimension estimate of the global attractor for a semi-discretized chemotaxis-growth system by conservative upwind finite-element scheme, J. Math. Anal. Appl., 358 (2009), 136-147.       
12 F. Filbet, A finite volume scheme for Patlak-Keller-Segel chemotaxis model, Numer. Math., 104 (2006), 457-488.       
13 H. Fujita, N. Saito and T. Suzuki, "Operator Theory and Numerical Methods,'' Elsevier, 2001.       
14 D. Fujiwara, $L^p$-theory for characterizing the domain of the fractional powers of $-\Delta $ in the half space, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169-177.       
15 P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'' Pitman, 1985.       
16 J. Haškovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, J. Stat. Phys., 135 (2009), 133-151.       
17 T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.       
18 D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.       
19 D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-89.       
20 F. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability, J. Theor. Biol., 26 (1970), 399-415.
21 A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite-elements, M2AN Math. Model. Numer. Anal., 37 (2003), 617-630.       
22 E. Nakaguchi and Y. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems, Hokkaido Math. J., 31 (2002), 385-429.       
23 A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'' Springer, 1983.       
24 N. Saito, A holomorphic semigroup approach to the lumped mass finite element method, J. Comput. Appl. Math., 169 (2004), 71-85.       
25 N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., 27 (2007), 332-365.       
26 N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, Kyoto University, B15 (2009), 125-146.       
27 T. Suzuki, "Free Energy and Self-Interacting Particles,'' Birkhauser, 2005.       
28 T. Suzuki and T. Senba, "Applied Analysis: Mathematical Methods in Natural Science,'' Imperial College Press, 2004.       

Go to top