`a`
Mathematical Biosciences and Engineering (MBE)
 

Mathematical analysis and numerical simulation of a model of morphogenesis
Pages: 1035 - 1059, Issue 4, October 2011

doi:10.3934/mbe.2011.8.1035      Abstract        References        Full text (513.0K)           Related Articles

Ana I. Muñoz - Departamento de Matemática Aplicada, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain (email)
José Ignacio Tello - Departamento de Matemática Aplicada, E.U. Informática. Universidad Politécnica de Madrid, Ctra. de Valencia, Km. 7. 28031 - Madrid, Spain (email)

1 F. W. Cummings, A model of morphogenesis, Phys. A, 3-4 (2004), 531-547.
2 E. V. Entchev, A. Schwabedissen and M. González-Gaitán, Gradient formation of the TGF-beta homolog Dpp, Cell, 103 (2000), 981-991.
3 E. V. Entchev and M. González-Gaitán, Morphogen gradient formation and vesicular trafficking, Traffic, 3 (2002), 98-109.
4 A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.       
5 D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin-New York, 1977.       
6 B. Ka\'zmierczak and K. Piechór, Heteroclinic solutions for a model of skin morphogenesis. The case of strong attachment of the epidermis to the basal lamina, Application of Mathematics in Biology and Medicine, Univ. Comput. Eng. Telecommun. Kielce, (2004), 85-90.
7 M. Kerszberg and L. Wolpert, Mechanism for positional signalling by morphogen transport: A theoretical study, J. Theor. Biol., 191 (1998), 103-114.
8 P. Krzyzanowski, P. Laurencot and D. Wrzosek, Well-posedness and convergence to the steady state for a model of morphogen transport, SIAM J. Math. Anal., 40 (2008), 1725-1749.
9 A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Agregation of a distributed source morphogen gradient degradation, Studies in Appl. Math., 114 (2005), 343-374.
10 A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion?, Dev. Cell, 2 (2002), 785-796.
11 A. D. Lander, Q. Nie and F. Y. M. Wan, Internalization and end flux in morphogen gradient degradation, J. Comput. Appl. Math., 190 (2006), 232-251.
12 J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969.       
13 Y. Lou, Q. Nie and F.Y.M. Wan, Effects of sog Dpp-receptor binding, SIAM J. Appl. Math., 65 (2005), 1748-1771.       
14 J. H. Merking, D. J. Needham and B. D. Sleeman, A mathematical model for the spread of morphogens with density dependent chemosensitivity, Nonlinearity, 18 (2005), 2745-2773.       
15 J. H. Merking and B. D. Sleeman, On the spread of morphogens, J. Math. Biol., 51 (2005), 1-17.       
16 R. E. Showalter, "Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations," Mathematical Surveys and Monographs, 49, AMS, Providence, Rhode Island, 1997.       
17 A. Teleman and S. Cohen, Dpp gradient formation in the Drosophila wing imaginal disc, Cell, 103 (2000), 971-980.
18 J. I. Tello, Mathematical analysis of a model of Morphogenesis, Discrete and Continuous Dynamical Systems - Series A, 25 (2009), 343-361.
19 J. I. Tello, On the existence of solutions of a mathematical model of morphogens, in "Modern Mathematical Tools and Techniques in Capturing Complexity Series: Understanding Complex Systems" 495-509 (eds. L. Pardo, N. Balakrishnan and M. A. Gil), Springer, 2011.
20 L. Wolpert, Positional information and the spatial pattern of cellular differentiation, J. Theore. Biol., 25 (1969), 1-47.

Go to top