Global asymptotic properties of staged models with multiple progression pathways for infectious diseases
Pages: 1019  1034,
Issue 4,
October
2011
doi:10.3934/mbe.2011.8.1019 Abstract
References
Full text (451.3K)
Related Articles
Andrey V. Melnik  Department of Applied Mathematics and Computer Science, Samara Nayanova Academia, Molodogvardeyskaya 196, 443001, Samara, Russian Federation (email)
Andrei Korobeinikov  MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland (email)
1 
R. M. Anderson, G. F. Medley, R. M. May and A. M. Johnson, A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Med. Biol., 3 (1986), 229263. 

2 
R. M. Anderson and R. M. May, "Infectious Diseases in Humans: Dynamics and Control," Oxford University Press, Oxford, 1991. 

3 
E. A. Barbashin, "Introduction to the Theory of Stability," WoltersNoordhoff, Groningen, 1970. 

4 
E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers & Mathematics with Applications, 12A (1986), 677694. 

5 
E. Beretta and V. Capasso, Global stability results for a multigroup SIR epidemic model, in "Mathematical Ecology" (eds. T. G. Hallam, L. J. Gross and S. A. Levin), World Scientific Publ., Teaneck, NJ, (1988), 317342. 

6 
O. Diekmann, J. A. P. Heesterbek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365382. 

7 
Z. Feng and H. R. Thieme, Endemic model with arbitrarily distributed periods of infection I. Fundamental properties of the model, SIAM J. Appl. Math. 61 (2000), 803833. 

8 
P. Georgescu and Y.H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math., 67 (2006/07), 337353. 

9 
B.S. Goh, "Management and Analysis of Biological Populations," Elsevier Science, Amsterdam, 1980. 

10 
A. B. Gumel, C. C. McCluskey and P. van den Driessche, Mathematical study of a stagedprogression HIV model with imperfect vaccine, Bull. Math. Biol., 68 (2006), 21052128. 

11 
H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513525. 

12 
H. Guo and M. Y. Li, Global dynamics of a stagedprogression model with amelioration for infectious diseases, J. Biol. Dynamics, 2 (2008), 154168. 

13 
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599653. 

14 
H. W. Hethcote, J. W. VanArk and I. M. Longini Jr., A simulation model of AIDS in San Francisco: I. Model formulation and parameter estimation, Math. Biosci., 106 (1991), 203222. 

15 
G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 11921207. 

16 
J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77109. 

17 
W. O. Kermack and A. G. McKendrick, A Contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700721. 

18 
A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 7583. 

19 
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879883. 

20 
A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission, Bull. Math. Biol., 68 (2006), 615626. 

21 
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 18711886. 

22 
A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225239. 

23 
A. Korobeinikov, Stability of ecosystem: Global properties of a general preypredator model, Math. Med. Biol., 26 (2009), 309321. 

24 
A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 7583. 

25 
J. P. LaSalle, "The Stability of Dynamical Systems," SIAM, Philadelphia, 1976. 

26 
X. Lin, H. W. Hethcote and P. van den Driessche, An epidemiological model for HIV/AIDS with proportional recruitment, Math. Biosci., 118 (1993), 181195. 

27 
A. M. Lyapunov, "The General Problem of the Stability of Motion," Taylor & Francis, Ltd., London, 1992. 

28 
W. Ma, M. Song and Y. Takeuchi, Global stability for an SIR epidemic model with time delay, Appl. Math. Lett., 17 (2004), 11411145. 

29 
C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 116. 

30 
C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603614. 

31 
C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, J. Math. Anal. Appl., 338 (2008), 518535. 

32 
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603610. 

33 
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay  distributed or discrete, Nonlinear Anal.  Real, 11 (2010), 5559. 

34 
C. C. McCluskey, P. Magal and G. F. Webb, Liapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 11091140. 

35 
D. Morgan, C. Mahe, B. Mayanja, J. M. Okongo, R. Lubega and J. A. Whitworth, HIV1 infection in rural Africa: Is there a difference in median time to AIDS and survival compared with that in industrialized countries, AIDS, 16 (2002), 597632. 

36 
D. Okuonghae and A. Korobeinikov, Dynamics of tuberculosis: The effect of direct observation therapy strategy (DOTS) in Nigeria, Math. Model. Nat. Phenom., 2 (2006), 99111. 

37 
G. RĂ¶st and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5 (2008), 389402. 

38 
Y. Takeuchi, "Global Dynamical Properties of LotkaVolterra Systems," World Scientific, Singapore, 1996. 

39 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

40 
J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV1 dynamics with two infinite delays, Math. Med. Biol., 2011. (doi:10.1093/imammb/dqr009) 

Go to top
