`a`
Mathematical Biosciences and Engineering (MBE)
 

The Within-Host dynamics of malaria infection with immune response
Pages: 999 - 1018, Issue 4, October 2011

doi:10.3934/mbe.2011.8.999      Abstract        References        Full text (1094.3K)           Related Articles

Yilong Li - Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China (email)
Shigui Ruan - Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, United States (email)
Dongmei Xiao - Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China (email)

1 P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis, Dis. Contin. Dynam. Syst. Ser. B, 8 (2007), 1-17.       
2 Z. Agur, D. Abiri and L. H. T. van der Ploeg, Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates, Proc. Natl. Acad. Sci. USA, 86 (1989), 9626-9630.
3 R. M. Anderson, Complex dynamic behaviors in the interaction between parasite populations and the host's immune system, Intl. J. Parasitol., 28 (1998), 551-566.
4 R. M. Anderson, R. M. May and S. Gupta, Non-linear phenomena in host-parasite interactions, Parasitology, 99 (1989), S59-S79.
5 R. Antia, B. R. Levin and R. M. May, Within-host population dynamics and the evolution and maintenance of microparasite virulence, Am. Nat., 144 (1994), 457-472.
6 A. D. Augustine, B. F. Hall, W. W. Leitner, A. X. Mo, T. M. Wali and A. S. Fauci, NIAID workshop on immunity to malaria: Addressing immunological challenges, Nature Immunol., 10 (2009), 673-678.
7 C. Chiyaka, W. Garira and S. Dube, Modelling immune response and drug therapy in human malaria infection, Comput. Math. Meth. Med., 9 (2008), 143-163.       
8 C. Coban, K. J. Ishii, T. Horii and S. Akira, Manipulation of host innate immune responses by the malaria parasite, TRENDS Microbiol., 15 (2007), 271-278.
9 J. A. Deans and Cohen, Immunology of malaria, Annu. Rev. Microbiol., 37 (1983), 25-49.
10 R. J. De Boer and A. S. Perelson, Towards a general function describing T cell proliferation, J. Theoret. Biol., 175 (1995), 567-576.
11 Z. Dong and J.-A. Cui, Dynamical model of vivax malaria intermittence attack in vivo, Intl. J. Biomath., 2 (2009), 507-524.       
12 M. F. Good, H. Xu, M. Wykes and C. R. Engwerda, Development and regulation of cell-mediated immune responses to the blood stages of malaria: Implications from vaccine research, Annu. Rev. Immunol., 23 (2005), 69-99.
13 M. B. Gravenor and A. L. Lloyd, Reply to: Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large overestimates of growth rates, Parasitology, 117 (1998), 409-410.
14 M. B. Gravenor, A. L. Lloyd, P. G. Kremsner, M. A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating total parasite load in falciparum malaria patients, J. Theoret. Biol., 217 (2002), 137-148.       
15 M. B. Gravenor, M. B. Van Hensbroek and D. Kwiatkowski, Estimating sequestered parasite population dynamics in cerebral malaria, Proc. Natl. Acad. Sci. USA, 95 (1998), 7620-7624.
16 C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria-theoretical and experimental studies, Parasitology, 113 (1996), 25-38.
17 M. B. Hoshen, R. Heinrich, W. D. Stein and H. Ginsburg, Mathematical modeling of the within-host dynamics of Plasmodium falciparum, Parasitology, 121 (2000), 227-235.
18 A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle, SIAM J. Appl. Math., 67 (2006), 260-278.       
19 T. Kajiwara and T. Sasaki, A note on the stability analysis of pathogen-immune interaction dynamics, Discret. Contin. Dynam. Syst. Ser. B, 4 (2004), 615-622.       
20 D. Kwiatkowsti and M. Nowak, Periodic and chaotic host-parasite interactions in human malaria, Proc. Natl. Acad. Sci. USA, 88 (1991), 5111-5113.
21 J. Langhorne, F. M. Ndungu, A.-M. Sponaas and K. Marsh, Immunity to malaria: More questions than answers, Nature Immunol., 9 (2008), 725-732.
22 W. Liu, Nonlinear oscillation in models of immune responses to persistent viruses, Theoret. Pop. Biol., 52 (1997), 224-230.
23 L. Malaguarnera and S. Musumeci, The immune response to Plasmodium falciparum malaria, Lancet Infect. Dis., 2 (2002), 472-478.
24 G. L. Mandell, J. E. Bennett and R. Dolin, "Principles and Practice of Infectious Diseases,'' Churchill Livingstone, New York, 1995.
25 F. E. McKenzie and H. W. Bossert, An integrated model of Plasmodium falciparum dynamics, J. Theoret. Biol., 232 (2005), 411-426.       
26 P. G. McQueen and F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections, Proc. Natl. Acad. Sci. USA, 101 (2004), 9161-9166.
27 P. G. McQueen and F. E. McKenzie, Host control of malaria infections: Constrains on immune and erythropoeitic response kinetics, PLoS Comput. Biol., 4 (2008), 15 pp.       
28 J. L. Mitchell and T. W. Carr, Oscillations in an intra-host model of plasmodium falciparum malaria due to cross-reactive immune response, Bull. Math. Biol., 72 (2010), 590-610.       
29 L. Molineaux and K. Dietz, Review of intra-host models of malaria, Parassitologia, 41 (1999), 221-231.
30 A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267.       
31 M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Nature, 272 (1996), 74-79.
32 S. S. Pilyugin and R. Antia, Modeling immune responses with handling time, Bull. Math. Biol., 62 (2000), 869-890.
33 S. I. Rapaport, "Introduction to Hematology,'' Lippincott, Philadelphia, 1987.
34 I. M. Rouzine and F. E. McKenzie, Link between immune response and parasite synchronization in malaria, Proc. Natl. Acad. Sci. USA, 100 (2003), 3473-3478.
35 S. Ruan and G. S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay, J. Math. Anal. Appl., 204 (1996), 786-812.       
36 A. Saul, Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large over-estimates of growth rates, Parasitology, 117 (1998), 405-407.
37 J. Stark, C. Chan and A. J. T. George, Oscillations in immune system, Immunol. Rev., 216 (2007), 213-231.
38 M. M. Stevenson and E. M. Riley, Innate immunity to malaria, Nat. Rev. Immunol., 4 (2004), 169-180.
39 Y. Su, S. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection, J. Math. Biol., 63 (2011), 557-574.
40 J. Tumwiine, J. Y. T. Mugisha and L. S. Luboobi, On global stability of the intra-host dynamics of malaria and the immune system, J. Math. Anal. Appl., 341 (2008), 855-869.       
41 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.       
42 WHO, "Malaria," 2008. Available from: http://www.who.int/malaria/en.
43 D. Xiao and H. W. Bossert, An intra-host mathematical model on interaction between HIV and malaria, Bull. Math. Biol., 72 (2010), 1892-1911.       

Go to top