`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$
Pages: 985 - 996, Issue 3, November 2011

doi:10.3934/dcds.2011.31.985      Abstract        References        Full text (355.2K)           Related Articles

Kohei Ueno - Toba National College of Maritime Technology, Mie 517-8501, Japan (email)

1 E. Bedford and M. Jonsson, Dynamics of regular polynomial endomorphisms of $\mathbbC^k$, Amer. J. Math., 122 (2000), 153-212.       
2 E. Bedford and J. Smillie, Polynomial diffeomorphisms of $\mathbbC^2$: Currents, equilibrium measure and hyperbolicity, Invent. Math., 103 (1991), 69-99.       
3 L. DeMarco and S. L. Hruska, Axiom A polynomial skew products of $\mathbbC^2$ and their postcritical sets, Ergodic Theory Dynam. Systems, 28 (2008), 1749-1779.       
4 T.-C. Dinh and N. Sibony, Dynamique des applications polynomiales semi-régulières, (French) [Dynamics of semiregular polynomial maps], Ark. Mat., 42 (2004), 61-85.       
5 T.-C. Dinh, R. Dujardin and N. Sibony, On the dynamics near infinity of some polynomial mappings in $\mathbbC^2$, Math. Ann., 333 (2005), 703-739.       
6 C. Favre and V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, (French) [Dynamics of rational mappings of multiprojective spaces], Indiana Univ. Math. J., 50 (2001), 881-934.       
7 C. Favre and M. Jonsson, Eigenvaluations, Ann. Sci. École Norm. Sup., 40 (2007), 309-349.       
8 C. Favre and M. Jonsson, Dynamical compactifications of $\mathbbC^2$, Ann. of Math., 173 (2011), 211-248.       
9 V. Guedj, Dynamics of polynomial mappings of $\mathbbC^2$, Amer. J. Math., 124 (2002), 75-106.       
10 V. Guedj, Dynamics of quadratic polynomial mappings of $\mathbbC^2$, Michigan Math. J., 52 (2004), 627-648.       
11 S.-M. Heinemann, Julia sets for holomorphic endomorphisms of $\mathbbC^n$, Ergodic Theory Dynam. Systems, 16 (1996), 1275-1296.       
12 S.-M. Heinemann, Julia sets of skew products in $\mathbbC^2$, Kyushu J. Math., 52 (1998), 299-329.       
13 M. Jonsson, Dynamics of polynomial skew products on $\mathbbC^2$, Math. Ann., 314 (1999), 403-447.       
14 T. Ueda, Fatou sets in complex dynamics on projective spaces, J. Math. Soc. Japan, 46 (1994), 545-555.       
15 K. Ueno, Symmetries of Julia sets of nondegenerate polynomial skew products on $\mathbbC^2$, Michigan Math. J., 59 (2010), 153-168.       
16 G. Vigny, Dynamics semi-conjugated to a subshift for some polynomial mappings in $\mathbbC^2$, Publ. Mat., 51 (2007), 201-222.       

Go to top