Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

A Harnack inequality for fractional Laplace equations with lower order terms
Pages: 975 - 983, Issue 3, November 2011

doi:10.3934/dcds.2011.31.975      Abstract        References        Full text (321.0K)           Related Articles

Jinggang Tan - Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso, Chile (email)
Jingang Xiong - School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China (email)

1 R. F. Bass and D. A. Levin, Harnack inequalities for jump processes, Potential Anal., 17 (2002), 375-388       
2 X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: Regularity, maximum principles, and hamiltonian estimates, preprint, arXiv:1012.0867v1.
3 L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.       
4 Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465-501.       
5 E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.       
6 Q. Han and F.-H. Lin, "Elliptic Partial Differential Equations," Courant Lecture Notes in Mathematics, 1, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 1997.       
7 Z.-C. Han and Y. Y. Li, The Yamabe problem on manifolds with boundary: Existence and compactness results, Duke Math. J., 99 (1999), 489-542.       
8 F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.       
9 M. Kassmann, The classical Harnack inequality fails for non-local operators, preprint.
10 B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.       
11 E. Stein, "Singular Integrals and Differentiability Properties of Function," Princeton Mathematical Series, 30, Princeton University Press, Princeton, NJ, 1970.       

Go to top