Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Homoclinic standing waves in focusing DNLS equations
Pages: 737 - 752, Issue 3, November 2011

doi:10.3934/dcds.2011.31.737      Abstract        References        Full text (5208.8K)           Related Articles

Michael Herrmann - Universität des Saarlandes, FR Mathematik, Postfach 15 11 50, D-66041 Saarbrücken, Germany (email)

1 S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Lattice Dynamics (Paris, 1995), Physica D, 103 (1997), 201-250.       
2 W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.       
3 J. Dorignac, J. Zhou and D. K. Campbell, Discrete breathers in nonlinear Schrödinger hypercubic lattices with arbitrary power nonlinearity, Physica D, 237 (2008), 486-504.       
4 J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equation - 20 years on, in Proceedings of the Third Conference on Localization and Energy Transfer in Nonlinear Systems 2002, 44-87, 2003.
5 J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, The discrete self-trapping equation, Physica D, 16 (1985), 318-338.       
6 S. Flach, K. Kladko and R. S. MacKay, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices, Phys. Rev. Lett., 78 (1987), 1207-1210.
7 M. Herrmann, Heteroclinic standing waves in defocussing DNLS equations: Variational approach via energy minimization, Appl. Anal., 89 (2010), 1591-1602, arXiv:1002.1591.       
8 P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 1, General Introduction and Derivation of the DNLS Equation, 3-9, Springer, Berlin, 2009.       
9 P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 5, The Defocusing Case, 117-141. Springer, Berlin, 2009.
10 P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 2, The One-Dimensional Case, 3-9, Springer, Berlin, 2009.
11 P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2833-2900.
12 A. Khare, K. Ø. Rasmussen, M. R. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A, 38 (2005), 807-814.       
13 P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.       
14 R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7 (1994), 1623-1643.       
15 A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19 (2006), 27-40.       
16 A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach, Discret. Contin. Dyn. Syst., 19 (2007), 419-430.       
17 A. Pankov and V. M. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 3219-3236.       
18 A. Pankov and N. Zakharchenko, On some discrete variational problems, Acta Appl. Math., 65 (2001), 295-303.       
19 J. A. Pava, "Nonlinear Dispersive Equations. Existence and Stability of Solitary and Periodic Travelling Wave Solutions," Mathematical Surveys and Monographs, 156, American Mathematical Society, Providence, RI, 2009.       
20 D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, Phys. D, 212 (2005), 1-19.       
21 D. E. Pelinovsky and V. M. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equations, Physica D, 202 (2005), 16-36.       
22 M. A. Porter, Experimental results related to DNLS equations, in "The Discrete Nonlinear Schrödinger Equation" (ed. P. G. Kevrekidis), 175-189, Springer Tracts Modern Phys., 232, Springer, Berlin, 2009.       
23 W.-X. Qin and X. Xiao, Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices, Nonlinearity, 20 (2007), 2305-2317.       
24 H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419.       
25 C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation, Milan J. Math., 76 (2008), 329-399.       
26 M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12 (1999), 673-691.       
27 M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.       
28 J. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math., 118 (2007), 153-197.       
29 G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials, Nonlinear Anal.-Theory Methods Appl., 71 (2009), e786-e792.       
30 G. Zhang and A. Pankov, Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials, to appear in Applicable Analysis, 2009.

Go to top