A trustregion filterSQP method for mathematical programs with linear complementarity constraints
Pages: 1041  1055,
Issue 4,
November
2011
doi:10.3934/jimo.2011.7.1041 Abstract
References
Full text (375.0K)
Related Articles
Chunlin Hao  Department of Applied Mathematics, Beijing University of Technology, Beijing 100124, China (email)
Xinwei Liu  Department of Applied Mathematics, Hebei University of Technology, Tianjin 300401, China (email)
1 
H. Benson, A. Sen, D. F. Shanno and R. J. Vanderbei, Interiorpoint algorithms, penalty methods and equilibrium problems, Comput. Optim. Appl., 34 (2006), 155182. 

2 
L. Chen and D. Goldfarb, An active set method for mathematical programs with linear complementarity constraints, Available from: http://www.corc.ieor.columbia.edu/reports/techreports/tr200702.pdf 

3 
R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint and A. Wächter, Global convergence of trustregion SQPfilter algorithms for general nonlinear programming, SIAM J. Optim., 13 (2002), 635659. 

4 
R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program Ser. A, 91 (2002), 239269. 

5 
R. Fletcher, S. Leyffer and C. Shen, Nonmonotone filter method for nonlinear optimization, Available from: http://wiki.mcs.anl.gov/leyffer/images/archive/c/c4/20091014223041!Nfilter.pdf 

6 
R. Fletcher, S. Leyffer and P. L. Toint, On the global convergence of a filterSQP algorithm, SIAM J. Optim., 13 (2002), 4459. 

7 
M. Fukushima, Z. Q. Luo and J. S. Pang, A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints, Comput. Optim. Appl., 10 (1998), 534. 

8 
M. Fukushima and J. S. Pang, Some feasibility issues in mathematical programs with equilibrium constraints, SIAM J. Optim., 8 (1998), 673681. 

9 
M. Fukushima and P. Tseng, An implementable activeset algorithm for computing a Bstationary point of a mathematical program with linear complementarity constraints, SIAM J. Optim., 12 (2002), 724739. 

10 
N. I. M. Gould, S. Leyffer and P. L. Toint, A multidimensional filter algorithm for nonlinear equations and nonlinear least squares, SIAM J. Optim., 15 (2004), 1738. 

11 
Z. Huang and J. Sun, A smoothing Newton algorithm for mathematical programs with complementarity constraints, J. Ind. Man. Optim., 1 (2005), 153170. 

12 
H. Jiang and D. Ralph, QPECgen: A MATLAB generator for mathematical programs with quadratic objectives and affine variational inequality constraints, Computational OptimizationA Tribute to Olvi Magasarian, Part II, Comput. Optim. Appl., 13 (1999), 2559. 

13 
H. Y. Jiang and D. Ralph, Smooth SQP methods for mathematical programs with nonlinear complementarity constraints, SIAM J. Optim., 10 (2000), 779808. 

14 
A. Kadrani, J.P. Dussault and A. Benchakroun, A new regularization scheme for mathematical programs with complementarity constraints, SIAM J. Optim., 20 (2009), 78103. 

15 
S. Leyffer, Complementarity constraints as nonlinear equations: Theory and numerical experience, in "Optimization with Multivalued Mappings," 2, Springer, New York, (2006), 169208. 

16 
S. Leyffer and T. S. Munson, A global convergent filter method for MPECs, Available from: http://www.mcs.anl.gov/~leyffer/papers/slpec.pdf 

17 
G. Lin and M. Fukushima, New relaxation method for mathematical programs with complementarity constraints, J. Optim. Theory Appl., 118 (2003), 81116. 

18 
X.W. Liu, G. Perakis and J. Sun, A robust SQP method for mathematical programs with linear complementarity constraints, Comput. Optim. Appl., 34 (2006), 533. 

19 
X.W. Liu and J. Sun, Generalized stationary points and an interiorpoint method for mathematical programs with equilibrium constraints, Math. Program., 101 (2004), 231261. 

20 
J. Long and S. Zeng, A projectionfilter method for solving nonlinear complementarity problems, Appl. Math. Comput., 216 (2010), 300307. 

21 
Z. Q. Luo, J.S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints," Cambridge University Press, Cambridge, 1996. 

22 
A. Raghunathan and L. T. Biegler, An interior point method for mathematical programs with complementarity constraints (MPCCs), SIAM J. Optim., 15 (2005), 720750. 

23 
D. Ralph, Sequential quadratic programming for mathematical programs with linear complementarity constraints, in "Computational Techniques and Applications: CTAC95" (eds. R. L. May and A. K. Easton), World Scientific Publ., River Edge, NJ, (1996), 663668. 

24 
S. Schöltes, Convergence properties of regularization scheme for mathematical programs with complementarity constraints, SIAM J.Optim., 11 (2001), 918936. 

25 
S. Schöltes and M. Stöhr, Exact penalization of mathematical programs with equilibrium constraints, SIAM J. Control Optim., 37 (1999), 617652. 

26 
C. Shen, W. Xue and D. Pu, A globally convergent trust region multidimensional filter SQP algorithm for nonlinear programming, Int. J. Comput. Math., 86 (2009), 22012217. 

27 
A. Wächter and L. Biegler, Line search filter methods for nonlinear programming: Local convergence, SIAM J. Optim., 16 (2005), 3248. 

28 
A. Wächter and L. Biegler, Line search filter methods for nonlinear programming: Motivation and global convergence, SIAM J. Optim., 16 (2005), 131. 

29 
J. Zhang, G. Liu and S. Wang, A globally convergent approximately active search algorithm for solving mathematical programs with linear complementarity constraints, Numer. Math., 98 (2004), 539558. 

Go to top
