`a`
Journal of Industrial and Management Optimization (JIMO)
 

A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization
Pages: 891 - 906, Issue 4, November 2011

doi:10.3934/jimo.2011.7.891      Abstract        References        Full text (381.2K)           Related Articles

Yanqin Bai - Department of Mathematics, Shanghai University, 99, Shangda Road, 200444, Shanghai, China (email)
Lipu Zhang - Department of Mathematics, Shanghai University, Shanghai 200444, China (email)

1 K. M. Anstreicher, D. den Hertog, C. Roos and T. Terlaky, A long-step barrier method for convex quadratic programming, Algorithmica, 10 (1993), 365-382.       
2 Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel function for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim., 15 (2004), 101-128.       
3 S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, 2004.
4 J. Faraut and A. Korányi, "Analysis on Symmetric Cones," Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994.       
5 L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, Special issue dedicated to William B. Gragg (Monterey, CA, 1996), J. Comput. Appl. Math., 86 (1997), 149-175.       
6 L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z., 239 (2002), 117-129.       
7 R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms, II: Convex quadratic programming, Math. Program., Ser. A, 44 (1989), 43-66.       
8 Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res., 22 (1997), 1-42.       
9 J. Peng, C. Roos and T. Terlaky, "Self-regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms," Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2002.       
10 C. Roos, T. Terlaky and J.-Ph. Vial, "Theory and Algorithms for Linear Optimization. An Interior Point Approach," Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Ltd., Chichester, 1997.       
11 S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric cones, Math. Program, Ser. A, 96 (2003), 409-438.       
12 Changjun Yu, Kok Lay Teo, Liangsheng Zhang and Yanqin Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 4 (2010), 895-910.
13 M. V. C. Vieira, "Jordan Algebraic Approach to Symmetric Optimization," Ph.D thesis, Delft University of Technology, 2007.

Go to top