A geometric criterion for the nonuniform hyperbolicity of the KontsevichZorich cocycle
Pages: 355  395,
Issue 2,
April
2011
doi:10.3934/jmd.2011.5.355 Abstract
References
Full text (435.6K)
Related Articles
Giovanni Forni  Department of Mathematics, University of Maryland, College Park, MD 207424015, United States (email)
1 
J. Athreya, A. Bufetov, A. Eskin and M. Mirzakhani, "Lattice Point Asymptotics and Volume Growth on Teichmüller Space," (2010), 139, arXiv:math/0610715. 

2 
J. Athreya and G. Forni, Deviation of ergodic averages for rational polygonal billiards, Duke Math. J., 144 (2008), 285319. 

3 
A. Avila and G. Forni, Weak mixing for intervalexchange transformations and translation flows, Ann. of Math. (2), 165 (2007), 637664. 

4 
A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the KontsevichZorich conjecture, Acta Math., 198 (2007), 156. 

5 
M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geometry & Topology, 11 (2007), 18872073. 

6 
M. Bainbridge and M. Möller, The DeligneMumford compactification of the real multiplication locus and Teichmüller curves in genus three, 2009, 180, to appear in Acta Math., arXiv:0911.4677v1. 

7 
I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), 172 (2010), 139185. 

8 
A. Bufetov, Finitelyadditive measures on the asymptotic foliations of a Markov compactum, (2009), 129, arXiv:0902.3303v1. 

9 
\bysame, Limit Theorems for Translation Flows, (2010), 169, arXiv:0804.3970v3. 

10 
K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871908. 

11 
A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of squaretiled cyclic covers, J. Mod. Dyn., 5 (2011), 355395. 

12 
\bysame, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, preprint. 

13 
A. Eskin and M. Mirzakhani, On invariant and stationary measures for the $\SL(2,R)$ action on moduli space, preprint, 2010. 

14 
H. M. Farkas and I. Kra, "Riemann Surfaces," Second edition, Graduate Texts in Mathematics, 71, SpringerVerlag, New York, 1992. 

15 
J. D. Fay, "Theta Functions on Riemann Surfaces," Lecture Notes in Mathematics, 352, SpringerVerlag, BerlinNew York, 1973. 

16 
G. Forni, Solutions of the cohomological equation for areapreserving flows on compact surfaces of higher genus, Ann. of Math. (2), 146 (1997), 295344. 

17 
\bysame, Deviation of ergodic averages for areapreserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1103. 

18 
\bysame, On the Lyapunov exponents of the KontsevichZorich cocycle, Handbook of Dynamical Systems Vol. 1B, (eds. B. Hasselblatt and A. Katok), Elsevier B. V., Amsterdam, (2006), 549580. 

19 
G. Forni and C. Matheus, An example of a Teichmüller disk in genus $4$ with degenerate KontsevichZorich spectrum, (2008), 18, arXiv:0810.0023. 

20 
G. Forni, C. Matheus and A. Zorich, Squaretiled cyclic covers, J. Mod. Dyn., 5 (2011), 285318. 

21 
\bysame, Lyapunov spectrum of equivariant subbundles of the Hodge bundle, preprint, 2010. 

22 
F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219237. 

23 
P. Hubert and E. Lanneau, Veech groups without parabolic elements, Duke Math. J., 133 (2006), 335346. 

24 
P. Hubert and T. A. Schmidt, Invariants of translation surfaces, Ann. Inst. Fourier (Grenoble), 51 (2001), 461495. 

25 
A. B. Katok, Invariant measures of flows on oriented surfaces, Dokl. Nauk. SSR 211, 1973, pp. 775778 (English translation: Sov. Math. Dokl. 14, 1973, pp. 11041108). 

26 
R. Kenyon and J. Smillie, Billiards on rationalangled triangles, Comment. Math. Helv., 75 (2000) 65108. 

27 
M. Kontsevich, Lyapunov exponents and Hodge theory, in "The Mathematical Beauty of Physics" (Saclay, 1996), Adv. Ser. Math. Phys., 24, World Scientific Publ., River Edge, NJ, (1997), 318332. 

28 
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631678. 

29 
R. Krikorian, Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de KontsevichZorich (d'après Forni, Kontsevich, Zorich, ...), (French) [Deviations of ergodic averages, Teichmüller flows and the KontsevichZorich cocycle (following Forni, Kontsevich, Zorick, ...)], Séminaire Bourbaki, 2003/2004 (2005), 5993. 

30 
H. Masur, On a class of geodesics in Teichmüller space, Ann. of Math. (2), 102 (1975), 205221. 

31 
\bysame, Intervalexchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169200. 

32 
C. Matheus and J.C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453486. 

33 
C. McMullen, Dynamics of $SL_2(\R)$ over moduli space in genus two, Ann. of Math. (2), 165 (2007), 397456. 

34 
\bysame, Prym varieties and Teichmüller curves, Duke Math. J., 133 (2006), 569590. 

35 
\bysame, Braid groups and Hodge theory, preprint, 163, to appear in Math. Ann. 

36 
M. Möller, Periodic points on Veech surfaces and the MordellWeil group over a Teichmüller curve, Invent. Math., 165 (2006), 633649. 

37 
\bysame, Shimura and Teichmüller curves, J. Mod. Dyn., 5 (2011), 132. 

38 
A. Nevo and E. M. Stein, Analogs of Wiener's ergodic theorems for semisimple groups. I, Ann. of Math. (2), 145 (1997), 565595. 

39 
G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315328. 

40 
J. Smillie and B. Weiss, Minimal sets for flows on moduli space, Israel J. Math., 142 (2004), 249260. 

41 
R. Treviño, On the nonuniform hyperbolicity of the KontsevichZorich cocycle for quadratic differentials, preprint, 2010, arXiv:1010.1038v2. 

42 
W. Veech, Gauss measures for transformations on the space of intervalexchange maps, Ann. of Math. (2), 115 (1982), 201242. 

43 
\bysame, The Teichmüller geodesic flow, Ann. of Math. (2), 124 (1986), 441530. 

44 
\bysame, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553583. 

45 
\bysame, The Forni cocycle, J. Mod. Dyn. 2 (2008), 375395. 

46 
A. Yamada, Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980), 114143. 

47 
A. Zorich, Asymptotic flag of an orientable measured foliation on a surface, in "Geometric Study of Foliations" (Tokyo, 1993), World Scientific Publ., River Edge, NJ, (1994), 479498. 

48 
\bysame Finite Gauss measure on the space of intervalexchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), 46 (1996), 325370. 

49 
\bysame, Deviation for intervalexchange transformations, Ergod. Th. & Dynam. Sys., 17 (1997), 14771499. 

50 
\bysame, On hyperplane sections of periodic surfaces, in "Solitons, Geometry and Topology: On the Crossroad" (eds. V.M. Buchstaber and S.P. Novikov), Amer. Math. Soc. Transl. (2), 179, AMS, Providence, RI, (1997), 173189. 

51 
\bysame, How do the leaves of a closed $1$form wind around a surface?, in "Pseudoperiodic Topology" (eds. V.I. Arnol'd, M. Kontsevich and A. Zorich), Amer. Math. Soc. Transl. (2), 197, AMS, Providence, RI, (1999), 135178. 

52 
\bysame, "Flat Surfaces," Frontiers in Number Theory, Physics, and Geometry I, Springer, Berlin, (2006), 437583. 

Go to top
