Lyapunov spectrum of squaretiled cyclic covers
Pages: 319  353,
Issue 2,
April
2011
doi:10.3934/jmd.2011.5.319 Abstract
References
Full text (396.9K)
Related Articles
Alex Eskin  Department of Mathematics, University of Chicago, Chicago, IL 60637, United States (email)
Maxim Kontsevich  IHES, le Bois Marie, 35, route de Chartres, 91440 BuressurYvette, France (email)
Anton Zorich  IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France (email)
1 
I. Bouw, "Tame Covers of Curves: PRanks and Fundamental Groups," Ph.D thesis, University of Utrecht, 1998. 

2 
I. Bouw, The $p$rank of ramified covers of curves, Compositio Math., 126 (2001), 295322. 

3 
I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), 172 (2010), 139185. 

4 
D. Chen, Covers of the projective line and the moduli space of quadratic differentials, (2010), 119, arXiv:1005.3120v1. 

5 
A. Elkin, The rank of the Cartier operator on cyclic covers of the projective line, Jour. of Algebra, 327 (2011), 112. 

6 
A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, preprint. 

7 
G. Forni, Deviation of ergodic averages for areapreserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1103. 

8 
G. Forni, On the Lyapunov exponents of the KontsevichZorich cocycle, in "Handbook of Dynamical Systems" (eds. B. Hasselblatt and A. Katok), Vol. 1B, Elsevier B.V., Amsterdam, (2006), 549580. 

9 
G. Forni, A geometric criterion for the nonuniform hyperbolicity of the KontsevichZorich cocycle, J. Mod. Dyn., 5 (2011), 355395. 

10 
G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate KontsevichZorich spectrum, (2008), 18, arXiv:0810.0023. 

11 
G. Forni, C. Matheus and A. Zorich, Squaretiled cyclic covers, J. Mod. Dyn., 5 (2011), 285318. 

12 
S. Grushevsky and I. Krichever, The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces, in "Surveys in Differential Geometry," Vol. XIV, Geometry of Riemann Surfaces and their Moduli Spaces, Int. Press, Somerville, MA, 2009, 111129. 

13 
M. Kontsevich, Lyapunov exponents and Hodge theory, in "The Mathematical Beauty of Physics," (Saclay, 1996), Adv. Ser. Math. Phys. 24, 318332, World Scientific Publ., River Edge, NJ, 1997. 

14 
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Inventiones Math., 153 (2003), 631678. 

15 
J. K. Koo, On holomorphic differentials of some algebraic function field of one variable over $\mathbbC$, Bull. Aust. Math. Soc., 43 (1991), 399405. 

16 
C. McMullen, Braid groups and Hodge theory, to appear in Math. Ann. 

17 
C. Peters, A criterion for flatness of Hodge bundles over curves and Geometric Applications, Math. Ann., 268 (1984), 119. 

18 
G. Schmithüsen, Examples for Veech groups of origamis, in "The Geometry of Riemann Surfaces and Abelian Varieties," Contemp. Math., 397, Amer. Math. Soc., Providence, RI, (2006), 193206. 

19 
M. Schmoll, Moduli spaces of branched covers of Veech surfaces I: Dsymmetric differentials, (2006), 140, arXiv:math.GT/0602396v1. 

20 
M. Schmoll, Veech groups for holonomy free torus covers, preprint, 2010. 

21 
J. Smillie, in preparation. 

22 
A. Wright, Abelian squaretiled surfaces, preprint, 2011. 

Go to top
