Local rigidity of homogeneous
parabolic actions: I. A model case
Pages: 203  235,
Issue 2,
April
2011
doi:10.3934/jmd.2011.5.203 Abstract
References
Full text (362.3K)
Related Articles
Danijela Damjanovic  Department of Mathematics, Rice University, 6100 Main St., Houston, TX 77005, United States (email)
Anatole Katok  Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States (email)
1 
E. J. Benveniste, Rigidity of isometric lattice actions on compact Riemannian manifolds, Geom. Funct. Anal., 10 (2000), 516542. 

2 
D. Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 1 (2007), 665688. 

3 
D. Damjanović and A. Katok, Local rigidity of restrictions of Weyl chamber flows, C. R. Math. Acad. Sci. Paris, 344 (2007), 503508. 

4 
D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n, R)$$/\Gamma$, Int. Math. Res. Notes, 2010. 

5 
D. Damjanović and A. Katok, Local rigidity of actions of higherrank abelian groups and KAM method, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 142154. 

6 
D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\Z^k$ actions on the torus, Ann. of Math. (2), 172 (2010), 18051858. 

7 
D. Fisher, First cohomology and local rigidity of group actions, Ann. of Math., to appear. 

8 
L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465526. 

9 
R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65222. 

10 
B. Hasselblatt and A. Katok, Principal structures, in "Handbook in Dynamical Systems," 1A, NorthHolland, Amsterdam, (2002), 1203. 

11 
A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higherrank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287314. 

12 
D. Mieczkowski, The first cohomology of parabolic actions for some higherrank abelian groups and representation theory, J. Mod. Dyn., 1 (2007), 6192. 

13 
D. Mieczkowski, "The Cohomological Equation and Representation Theory," Ph.D thesis, The Pennsylvania State University, 2006. 

14 
J. Moser, On commuting circle mappings and simoultaneous Diophantine approximations, Math. Z., 205 (1990), 105121. 

15 
F. Ramirez, Cocycles over higherrank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn., 3 (2009), 335357. 

16 
E. Zehnder, Generalized implicitfunction theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math., 28 (1975), 91140. 

17 
Z. Wang, Local rigidity of partially hyperbolic actions, J. Mod. Dyn., 4 (2010), 271327. 

18 
Z. Wang, New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions, J. Mod. Dyn., 4 (2010), 585608. 

Go to top
