`a`
Journal of Modern Dynamics (JMD)
 

New light on solving the sextic by iteration: An algorithm using reliable dynamics
Pages: 397 - 408, Issue 2, April 2011

doi:10.3934/jmd.2011.5.397      Abstract        References        Full text (296.5K)           Related Articles

Scott Crass - Mathematics Department, The California State University at Long Beach, Long Beach, CA 90840-1001, United States (email)

1 S. Crass and P. Doyle, Solving the sextic by iteration: A complex dynamical approach, Internat. Math. Res. Notices, (1997), 83-99.       
2 S. Crass, Solving the sextic by iteration: A study in complex geometry and dynamics, Experiment. Math., 8 (1999), 209-240. Preprint at: http://arxiv.org/abs/math.DS/9903111.       
3 S. Crass, A family of critically finite maps with symmetry, Publ. Mat., 49 (2005), 127-157. Preprint at: http://arxiv.org/abs/math.DS/0307057.       
4 S. Crass, Solving the heptic by iteration in two dimensions: Geometry and dynamics under Klein's group of order 168, J. Mod. Dyn., 1 (2007), 175-203.       
5 S. Crass, Available from: http://www.csulb.edu/~scrass/math.html
6 J. E. Fornaess and N. Sibony, Complex dynamics in higher dimension I, Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque, 222 (1994), 201-231.       
7 C. McMullen, Julia, (computer program). Available from: http://www.math.harvard.edu/~ctm/programs.html
8 H. Nusse and J. Yorke, "Dynamics: Numerical Explorations," Second edition. Accompanying computer program Dynamics 2 coauthored by Brian R. Hunt and Eric J. Kostelich, With 1 IBM-PC floppy disk (3.5 inch; HD). Applied Mathematical Sciences, 101. Springer-Verlag, New York, 1998.       
9 G. Shephard and T. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304.       
10 K. Ueno, Dynamics of symmetric holomorphic maps on projective spaces, Publ. Mat., 51 (2007), 333-344.       

Go to top