Mathematical Control and Related Fields (MCRF)

Control of a network of magnetic ellipsoidal samples
Pages: 129 - 147, Volume 1, Issue 2, June 2011

doi:10.3934/mcrf.2011.1.129      Abstract        References        Full text (421.2K)           Related Articles

Shruti Agarwal - Indian Institute of Technology Madras, Department of Mathematics, Chennai - 600 036, India (email)
Gilles Carbou - IMB, Université Bordeaux, 351 cours la Libération, 33405 Talence, France (email)
Stéphane Labbé - Laboratoire Jean Kuntzmann, Université de Grenoble, Tour IRMA, 51 rue des Mathématiques, BP 53, 38041 Grenoble Cedex 9, France (email)
Christophe Prieur - Department of Automatic Control, Gipsa-lab, 961 rue de la Houille Blanche, BP 46, 38402 Grenoble Cedex, France (email)

1 François Alouges and Karine Beauchard, Magnetization switching on small ferromagnetic ellipsoidal samples, ESAIM Control Optim. Calc. Var., 15 (2009), 676-711.       
2 François Alouges and Alain Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.       
3 S. W. Anwane, "Fundamentals of Electromagnetic Fields," Infinity Science Press, Hingham, Masschusetts, 2007.
4 L'ubomír Baňas, Sören Bartels and Andreas Prohl, A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 46 (2008), 1399-1422.       
5 William F. Brown, "Micromagnetics," Wiley, New York, 1963.
6 Gilles Carbou, Stability of static walls for a three-dimensional model of ferromagnetic material, J. Math. Pures Appl., 93 (2010), 183-203.       
7 Gilles Carbou and Pierre Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differential Integral Equations, 14 (2001), 213-229.       
8 Gilles Carbou and Pierre Fabrie, Regular solutions for Landau-Lifschitz equation in $\R^3$, Commun. Appl. Anal., 5 (2001), 17-30.       
9 Gilles Carbou, Stéphane Labbé and Emmanuel Trélat, Control of travelling walls in a ferromagnetic nanowire, Discrete Contin. Dyn. Syst., 1 (2008), 51-59.       
10 Shijin Ding, Boling Guo, Junyu Lin and Ming Zeng, Global existence of weak solutions for Landau-Lifshitz-Maxwell equations, Discrete Contin. Dyn. Syst., 17 (2007), 867-890.       
11 Boling Guo and Fengqiu Su, Global weak solution for the Landau-Lifshitz-Maxwell equation in three space dimensions, J. Math. Anal. Appl., 211 (1997), 326-346.       
12 D. J. Griffiths, "Introduction to Electrodynamics," 3rd edition, PearsonBenjamin Cummings, San Francisco, CA, 2008.
13 Stéphane Labbé, "Simulation Numérique du Comportement Hyperfréquence des Matériaux Ferromagnétiques," Editions Universitaires Européennes, 2010.
14 Stéphane Labbé, Fast computation for large magnetostatic systems adapted for micromagnetism, SIAM J. Sci. Comp., 26 (2005), 2160-2175.       
15 Stéphane Labbé and Pierre-Yves Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization, Journal of Magnetism and Magnetic Materials, 206 (1999), 93-105.
16 L. Landau and E. Lifschitz, "Electrodynamique des Milieux Continus, Cours de Physique Théorique," (French) [Electrodynamic of Continuous Media, Theoretical Physics Course], VIII, Mir, Moscou, 1969.
17 J. A. Osborn, Demagnetizing factors of the general ellipsoid, Phys. Rev., 67 (1945), 351-357.
18 Augusto Visintin, On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied Mathematics, 1 (1985), 69-84.

Go to top