`a`
Mathematical Biosciences and Engineering (MBE)
 

The replicability of oncolytic virus: Defining conditions in tumor virotherapy
Pages: 841 - 860, Volume 8, Issue 3, July 2011

doi:10.3934/mbe.2011.8.841      Abstract        References        Full text (361.5K)           Related Articles

Jianjun Paul Tian - Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States (email)

1 M. Aghi and R. L. Martuza, Oncolytic viral therapy-the clinical experience, Oncogene, 24 (2005), 7802-7816.
2 Z. Bajzer, T. Carr, K. Josic, S. J. Russel and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theoretical Biology, 252 (2008), 109-122.
3 J. Carr, "Applications of Centre Manifold Theory," Applied Mathematics Sciences, 35, Springer-Verlag, New York-Berlin, 1981.       
4 E. A. Chiocca, Oncolytic viruses, Nature Reviews, Cancer, 2 (2002), 938-950.
5 D. Dingli, M. D. Cascino, K. Josić, S. J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78.       
6 A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Research, 66 (2006), 2314-2319.
7 B. A. Fuchs and V. I. Levin, "Functions of A Complex Variable," Pergamon Press, London, 1961.
8 G. Fulci, et al, Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses, PNAS Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 12873-12878.
9 B. D. Hassard, N. D. Hazzarinoff and Y.-H. Wan, "Theory and Applications of Hopf Bifurcation," Cambridge, 1981.
10 H. Kambara, H. Okano, E. A. Chiocca and Y. Saeki, An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor, Cancer Res., 65 (2005), 2832-2839.
11 A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, Biology Direct, 1 (2006), 1-18.
12 Y. Tao and Q. Guo, The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51 (2005), 37-74.       
13 D. Vasiliu and J. P. Tian, Periodic solutions of a model for tumor virotherapy, Discrete and Continuous Dynamical Systems Ser. S, 4 (2011), 1587-1597.       
14 L. M. Wein, J. T. Wu and D. H. Kirn, Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: Implications for virus design and delivery, Cancer Res., 63 (2003), 1317-1324.
15 D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507.
16 D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PloS ONE, 4 (2009), e4271.
17 D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents, Hum. Gene Ther., 14 (2003), 153-159.
18 J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells, Bull. Math. Biol., 63 (2001), 731-768.

Go to top