Mathematical Biosciences and Engineering (MBE)

Modeling the effects of carriers on transmission dynamics of infectious diseases
Pages: 711 - 722, Volume 8, Issue 3, July 2011

doi:10.3934/mbe.2011.8.711      Abstract        References        Full text (401.1K)           Related Articles

Darja Kalajdzievska - Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada (email)
Michael Yi Li - Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada (email)

1 M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004), 385-402.       
2 S. Goldstein, F. Zhou, S. C. Hadler, B. P. Bell, E. E. Mast and H. S. Margolis, A mathematical model to estimate global hepatits B disease burden and vaccination impact, Int. J. Epidemiol., 34 (2005), 1329-1339.
3 H. Guo, Global dynamics of a mathematical model of tuberculosis, Canadian Appl. Math. Quart., 13 (2005), 313-323.       
4 H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525.       
5 J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3 (2006), 89-100.       
6 D. Kalajdzievska, "Modeling the Effects of Carriers on the Transmission Dynamics of Infectious Diseases," M.Sc. thesis, University of Alberta, 2006.
7 J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease: A deterministic model, Bull. Math. Bio., 40 (1978), 707-718.       
8 A. Korobeinikov and P. K. Maini, A Lyaponov function and global properties for SIR and SEIR epedimiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60.       
9 J. P. LaSalle, "The Stability of Dynamical Systems," Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.       
10 G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus edemicity: Heterogeneity, catastrophic dynamics and control, Nat. Med., 7 (2001), 617-624.
11 R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Analysis: Modelling and Control, 13 (2008), 331-350.       
12 M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump and C. J. Donskey, Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents, Clin. Infect. Dis., 45 (2007), 992-998.
13 P. Roumagnac, et al., Evolutionary history of Salmonella typhi, Science, 314 (2006), 1301-1304.
14 C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccination, Am. J. Epidemiol., 162 (2005), 89-100.
15 S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744-752.
16 "The ABCs of Hepatitis," Center for Disease Control and Prevention (CDC), 2009. Available from: http://www.cdc.gov/hepatitis/Resources/Professionals/PDFs/ABCTable_BW.pdf.
17 "Viral Hepatitis and Emerging Bloodborne Pathogens in Canada," CCDR, 27S3, Public Health Agency of Canada (PHAC), 2001.
18 WHO, "Fact Sheet on Hepatitis B," 2008. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/index.html.

Go to top