`a`
Mathematical Biosciences and Engineering (MBE)
 

A note for the global stability of a delay differential equation of hepatitis B virus infection
Pages: 689 - 694, Volume 8, Issue 3, July 2011

doi:10.3934/mbe.2011.8.689      Abstract        References        Full text (266.2K)           Related Articles

Bao-Zhu Guo - Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100190, China (email)
Li-Ming Cai - Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100190, China (email)

1 S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2 (2008), 140-153.       
2 G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 22 (2009), 1690-1693.       
3 G. Huang, Y. Takeuchi and W. Ma, Lyapunov functional for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708.       
4 G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207.       
5 A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.       
6 A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886.       
7 A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS models epidemic models, Math. Med. Biol., 21 (2004), 75-83.
8 A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960.       
9 M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505.       
10 M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448.       
11 C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610.       
12 C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear. Anal. Real World Appl., 11 (2010), 55-59.       
13 L. Min, Y. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky. Mount. J. Math., 38 (2008), 1573-1585.       
14 M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Nat. Acad. Sci. USA, 93 (1996), 4398-4402.
15 M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.

Go to top