`a`
Advances in Mathematics of Communications (AMC)
 

The number of invariant subspaces under a linear operator on finite vector spaces
Pages: 407 - 416, Volume 5, Issue 2, May 2011

doi:10.3934/amc.2011.5.407      Abstract        References        Full text (355.6K)           Related Articles

Harald Fripertinger - Institut für Mathematik, Karl-Franzens Universität Graz, Heinrichstr. 36/4, A-8010 Graz, Austria (email)

1 A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, "Error-Correcting Linear Codes - Classification by Isometry and Applications,'' Springer, Berlin, Heidelberg, New York, 2006.       
2 L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Can. J. Math., 19 (1967), 810-822.       
3 H. Fripertinger, Enumeration of isometry classes of linear $(n,k)$-codes over $GF(q)$ in SYMMETRICA, Bayreuth. Math. Schr., 49 (1995), 215-223.       
4 H. Fripertinger, Enumeration of linear codes by applying methods from algebraic combinatorics, Grazer Math. Ber., 328 (1996), 31-42.       
5 H. Fripertinger, Cycle indices of linear, affine and projective groups, Linear Algebra Appl., 263 (1997), 133-156.       
6 H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes, in "Applied Algebra, Algebraic Algorithms and Error-Correcting Codes'' (eds. G. Cohen, M. Giusti and T. Mora), Springer, 1995, 194-204.       
7 GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12, 2008.
8 N. Jacobson, "Lectures In Abstract Algebra, II,'' D. Van Nostrand Company Inc., New York, 1953.       
9 A. Kerber, "Applied Finite Group Actions,'' Springer, Berlin, Heidelberg, New York, 1999.       
10 J. P. S. Kung, The cycle structure of a linear transformation over a finite field, Linear Algebra Appl., 36 (1981), 141-155.       
11 W. Lehmann, Das Abzähltheorem der Exponentialgruppe in gewichteter Form (in German), Mitt. Math. Sem. Giessen, 112 (1974), 19-33.       
12 W. Lehmann, "Ein vereinheitlichender Ansatz für die REDFIELD - PÓLYA - de BRUIJNSCHE Abzähltheorie,'' Ph.D thesis, Universität Giessen, 1976.
13 G. E. Séguin, The algebraic structure of codes invariant under a permutation, in "Information Theory and Applications, II,'' Springer, Berlin, (1996), 1-18.       
14 D. Slepian, Some further theory of group codes, Bell Sys. Techn. J., 39 (1960), 1219-1252.       
15 D. Slepian, Some further theory of group codes, in "Algebraic Coding Theory: History and Development'' (ed. I.F. Blake), Stroudsbourg, Dowden, Hutchinson & Ross, Inc., (1973), 118-151.       
16 SYMMETRICA, A program system devoted to representation theory, invariant theory and combinatorics of finite symmetric groups and related classes of groups, Copyright by "Lehrstuhl II für Mathematik, Universität Bayreuth, 95440 Bayreuth,'' available online at http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/

Go to top