`a`
Advances in Mathematics of Communications (AMC)
 

Algebraic structure of the minimal support codewords set of some linear codes
Pages: 233 - 244, Volume 5, Issue 2, May 2011

doi:10.3934/amc.2011.5.233      Abstract        References        Full text (404.9K)           Related Articles

Irene Márquez-Corbella - Dpto. Álgebra, Geometría y Topología, Universidad de Valladolid, Castilla, Spain (email)
Edgar Martínez-Moro - Dpto. Matemática Aplicada, Universidad de Valladolid, Castilla, Spain (email)

1 A. Barg, Complexity issues in coding theory, in "Handbook of Coding Theory'' (eds. V. Pless and W. Huffman), Elsevier Science, I (1998), 649-754.       
2 E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inform. Theory, IT-24 (1978), 384-386.       
3 T. Bogart, A. N. Jensen and R. R. Thomas, The circuit ideal of a vector configuration, J. Algebra, 308 (2007), 518-542.       
4 M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, Gröbner bases and combinatorics for binary codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 393-411.       
5 M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella and E. Martínez-Moro, An algebraic view to gradient descent decoding, in "IEEE Information Theory Workshop 2010,'' Dublin, 2010.
6 M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, A Gröbner bases structure associated to linear codes, J. Discrete Math. Sci. Cryptogr., 10 (2007), 151-191.       
7 Y. Borissov and N. Manev, Minimal codewords in linear codes, Serdica Math. J., 30 (2004), 303-324.       
8 J. Bruck and M. Naor, The hardness of decoding linear codes with preprocessing, IEEE Trans. Inform. Theory, 36 (1990), 381-385.       
9 P. Conti and C. Traverso, Buchberger algorithm and integer programming, in "Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,'' New Orleans, LA, (1991), 130-139.       
10 F. Di Biase and R. Urbanke, An algorithm to calculate the kernel of certain polynomial ring homomorphisms, Experiment. Math., 4 (1995), 227-234.       
11 T. Y. Hwang, Decoding linear block codes for minimizing word error rate, IEEE Trans. Inform. Theory, 25 (1979), 733-737.       
12 D. Ikegami and Y. Kaji, Maximum likelihood decoding for linear block codes using Gröbner bases, IEICE Trans. Fund. Electron. Commun. Comput. Sci., E86-A , 3 (2003), 643-651.
13 R. Liebler, Implementing gradient descent decoding, Michigan Math. J., 58 (2009), 285-291.       
14 J. L. Massey, Minimal Codewords and Secret Sharing, in "Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory,'' (1993), 246-249.
15 H. Ohsugi, D. Ikegami, T. Kitamura and T. Hibi, Gröbner bases bases of certain zero-dimensional ideals arising in coding theory, Adv. Appl. Math., 31 (2003), 420-432.       
16 P. Pisón-Casares and A. Vigneron-Tenorio, On Lawrence semigroups, J. Symb. Comput., 43 (2008), 804-810.       
17 A. Schrijver, "Theory of Linear and Integer Programming,'' Wiley-Interscience, 1996.       
18 B. Sturmfels, "Gröbner Bases and Convex Polytopes,'' American Mathematical Society, Providence, RI, 1996.       

Go to top