`a`
Advances in Mathematics of Communications (AMC)
 

Symmetric designs possessing tactical decompositions
Pages: 199 - 208, Volume 5, Issue 2, May 2011

doi:10.3934/amc.2011.5.199      Abstract        References        Full text (272.3K)           Related Articles

Ivica Martinjak - University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, Unska 3, 10000 Zagreb, Croatia (email)
Mario-Osvin Pavčević - University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, Unska 3, 10000 Zagreb, Croatia (email)

1 W. O. Alltop, An infinite class of $5$-designs, J. Combin. Theory Ser. A, 12 (1972), 390-395.       
2 I. Bouyukliev, V. Fack and J. Winne, $2$-$(31,15,7)$, $2$-$(35,17,8)$ and $2$-$(36,15,6)$ designs with automorphisms of odd prime order, and their related Hadamard matrices and codes, Des. Codes Crypt., 51 (2009), 105-122.       
3 D. Crnković and D. Held, Some Menon designs having $U(3,3)$ as an automorphism group, Illinois J. Math., 47 (2003), 129-139.       
4 V. Ćepulić, On symmetric block designs $(40,13,4)$ with automorphisms of order $5$, Discrete Math., 128 (1994), 45-60.       
5 D. Held, J. Hrabe de Angelis and M.-O. Pavčević, $PSp_4(3)$ as a symmetric $(36,15,6)$ design, Rend. Sem. Mat. Univ. Padova, 101 (1999), 95-98.       
6 D. Held and M.-O. Pavčević, Symmetric $(79,27,9)$ design admitting a faithful action of a Frobenius group of order $39$, Europ. J. Combinatorics, 18 (1997), 409-416.       
7 Y. J. Ionin and T. van Trung, Symmetric designs, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 110-124.
8 Z. Janko and T. van Trung, Construction of a new symmetric block design for $(78,22,6)$ with the help of tactical decompositions, J. Combin. Theory Ser. A, 40 (1985), 451-455.       
9 P. Kaski and P. R. J. Östergärd, "Classification Algorithms for Codes and Designs,'' Springer, Berlin, 2006.       
10 V. Krčadinac, Steiner $2$-designs $S(2,5,41)$ with automorphisms of order $3$, J. Combin. Math. Combin. Comput., 43 (2002), 83-99.       
11 E. Lander, "Symmetric Designs: An Algebraic Approach,'' Cambridge University Press, Cambridge, 1983.       
12 R. Mathon and A. Rosa, $2$-$(v,k,\lambda)$ designs of small order, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 25-58.
13 B. D. McKay, Nauty user's guide (version 1.5), Technical Report TR-CS-90-02, Dep. Computer Science, Australian National University, 1990.

Go to top