`a`
Advances in Mathematics of Communications (AMC)
 

Some connections between self-dual codes, combinatorial designs and secret sharing schemes
Pages: 191 - 198, Volume 5, Issue 2, May 2011

doi:10.3934/amc.2011.5.191      Abstract        References        Full text (291.5K)           Related Articles

Stefka Bouyuklieva - Department of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria (email)
Zlatko Varbanov - Department of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria (email)

1 E. F. Assmus and H. F. Mattson, New $5$-designs, J. Combin. Theory, 6 (1969), 122-151.       
2 S. Bouyuklieva and M. Harada, Extremal self-dual $[50,25,10]$ codes with automorphisms of order $3$ and quasi-symmetric $2-(49,9,6)$ designs, Des. Codes Crypt., 28 (2003), 163-169.       
3 J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.       
4 S. T. Dougherty, S. Mesnager and P. Solé, Secret-sharing schemes based on self-dual codes, in "Information Theory Workshop,'' Porto, (2008), 338-342.
5 W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11 (2005), 451-490.       
6 W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge Univ. Press, 2003.       
7 J. L. Massey, Some applications of coding theory in cryptography, in "Codes and Ciphers, Cryptography and Coding IV'' (ed. P.G. Farrell), Formara Lt, Esses, England, (1995), 33-47.
8 E. M. Rains, Shadow bounds for self-dual-codes, IEEE Trans. Inform. Theory, 44 (1998), 134-139.       

Go to top