`a`
Mathematical Biosciences and Engineering (MBE)
 

Mathematical modeling of cyclic treatments of chronic myeloid leukemia
Pages: 289 - 306, Volume 8, Issue 2, April 2011

doi:10.3934/mbe.2011.8.289      Abstract        References        Full text (447.8K)           Related Articles

Natalia L. Komarova - Department of Mathematics, University of California Irvine, Irvine CA 92697, United States (email)

1 M. R. Arkin and J. A. Wells, Small-molecule inhibitors of protein-protein interactions: progressing towards the dream, Nat. Rev. Drug Discov., 3 (2004), 301-317.
2 T. Asaki, Y. Sugiyama, T. Hamamoto, M. Higashioka, M. Umehara, H. Naito and T. Niwa, Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase inhibitors, Bioorg. Med. Chem. Lett., 16 (2006), 1421-1425.
3 D. E. Axelrod, K. A. Baggerly and M. Kimmel, Gene amplification by unequal sister chromatid exchange: probabilistic modeling and analysis of drug resistance data, J. Theor. Biol., 168 (1994), 151-159.
4 N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences," Wiley, New York, 1964.       
5 N. Bellomo, N. K. Li and P. K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18 (2008), 593-646.       
6 Nicola Bellomo, Mark Chaplain and Elena De Angelis (eds.), "Selected Topics on Cancer Modeling: Genesis - Evolution - Immune Competition - Therapy," Boston, Birkhauser, 2008.       
7 D. Bonnet and J. E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat. Med., 3 (1997), 730-737.
8 H. A. Bradeen, C. A. Eide, T. O'Hare, K. J. Johnson, S. G.Willis, F. Y. Lee, B. J. Druker and M. W. Deininger, Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations, Blood, 108 (2006), 2332-2338.
9 H. M. Byrne, T. Alarcon, M. R. Owen, S. D. Webb and P. K. Maini, Modelling aspects of cancer dynamics: A review, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 364 (2006), 1563-1578.       
10 A. J. Coldman and J. H. Goldie, Role of mathematical modeling in protocol formulation in cancer chemotherapy, Cancer Treat. Rep., 69 (1985), 1041-1048.
11 A. J. Coldman and J. H. Goldie, A stochastic model for the origin and treatment of tumors contain- ing drug-resistant cells, Bull. Math. Biol., 48 (1986), 279-292.       
12 R. S. Day, Treatment sequencing, asymmetry, and uncertainty: Protocol strategies for combination chemotherapy, Cancer Res., 46 (1986), 3876-3885.
13 M. W. Deininger, Optimizing therapy of chronic myeloid leukemia, Experimental Hematol., 35 (2007), 144-154.
14 M. W. Deininger and B. J. Druker, Specific targeted therapy of chronic myelogenous leukemia with imatinib, Pharmacol. Rev., 55 (2003), 401-423.
15 T. S. Deisboeck, L. Zhang, J. Yoon and J. Costa, In silico cancer modeling: Is it ready for prime time?, Nat. Clin. Pract. Oncol., 6 (2009), 34-42.
16 M. Eigen, and P. Schuster, "The Hypercycle: A Principle of Natural Self-Organization," Springer-Verlag, Berlin, New York, 1979.
17 S. Faderl, M. Talpaz, Z. Estrov and H. M. Kantarjian, Chronic myelogenous leukemia: biology and therapy, Ann. Intern. Med., 131 (1999), 207-219.
18 E. A. Gaffney, The application of mathematical modelling to aspects of adjuvant chemotherapy scheduling, J. Math. Biol., 48 (2004), 375-422.       
19 E. A. Gaffney, The mathematical modelling of adjuvant chemotherapy scheduling: incorporating the effects of protocol rest phases and pharmacokinetics, Bull. Math. Biol., 67 (2005), 563-611.       
20 C. W. Gardiner, "Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences," Springer, 2004.       
21 Shea N. Gardner and Michael Fernandes, New tools for cancer chemotherapy: Computational assistance for tailoring treatments, Mol. Cancer Ther., 2 (2003), 1079-1084.
22 R. A. Gatenby, J. Brown and T. Vincent, Lessons from applied ecology: Cancer control using an evolutionary double bind, Cancer Res., 69 (2009), 7499-7502.
23 J. H. Goldie and A. J. Coldman, A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate, Cancer Treat. Rep., 63 (1979), 1727-1733.
24 J. H. Goldie and A. J. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents, Math. Biosci., 65 (1983), 291-307.
25 J. H. Goldie and A. J. Coldman, Quantitative model for multiple levels of drug resistance in clinical tumors, Cancer Treat. Rep., 67 (1983), 923-931.
26 J. H. Goldie and A. J. Coldman, "Drug Resistance in Cancer: Mechanisms and Models," Cambridge University Press, 1998.
27 J. H. Goldie, A. J. Coldman and G. A. Gudauskas, Rationale for the use of alternating non-cross-resistant chemotherapy, Cancer Treat. Rep., 66 (1982), 439-449.
28 L. E. Harnevo and Z. Agur, Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency, Cancer Chemother. Pharmacol., 30 (1992), 469-476.
29 A. A. Katouli and N. L. Komarova, The worst drug rule revisited: Mathematical modeling of cyclic cancer treatments, Bull. Math Bio., (2010), 1-36.
30 M. Kimmel and D. N. Stivers, Time-continuous branching walk models of unstable gene amplification, Bull. Math. Biol., 56 (1994), 337-357.
31 M. Kimmel, A. Swierniak and A. Polanski, Infinite-dimensional model of evolution of drug resistance of cancer cells, Jour. Math. Syst. Est. Contr., 8 (1998), 1-16.       
32 N. L. Komarova, Stochastic modeling of drug resistance in cancer, J. Theor. Biol., 239 (2006), 351-366.       
33 N. L. Komarova, A. A. Katouli and D. Wodarz, Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia, PLoS ONE, 4 (2009), e4423.
34 N. L. Komarova and D. Wodarz, Drug resistance in cancer: Principles of emergence and prevention, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 9714-9719.
35 L. Norton and R. Day, Potential innovations in scheduling of cancer chemotherapy, in "Important Advances in Oncology" (Vincent T. Devita, Samuel Hellman, and Steven A. Rosenberg, eds.), Lippincott, Williams & Wilkins, Philadelphia, 1985, 57-72.
36 A. S. Novozhilov, G. P. Karev and E. V. Koonin, Biological applications of the theory of birth-and-death processes, Brief. Bioinformatics, 7 (2006), 70-85.
37 M. E. O'Dwyer, M. J. Mauro and B. J. Druker, Recent advancements in the treatment of chronic myelogenous leukemia, Annu. Rev. Med., 53 (2002), 369-381.
38 T. O'Hare, C. A. Eide, J. W. Tyner, A. S. Corbin, M. J. Wong, S. Buchanan, K. Holme, K. A. Jessen, C. Tang, H. A. Lewis, R. D. Romero, S. K. Burley and M. W. Deininger, SGX393 inhibits the CML mutant BcrAblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 5507-5512.
39 K. Peggs and S. Mackinnon, Imatinib mesylate-the new gold standard for treatment of chronic myeloid leukemia, N. Engl. J. Med., 348 (2003), 1048-1050.
40 A. Quintas-Cardama, H. Kantarjian, L. V. Abruzzo and J. Cortes, Extramedullary BCR-ABL1-negative myeloid leukemia in a patient with chronic myeloid leukemia and synchronous cytogenetic abnormalities in Philadelphia-positive and negative clones during imatinib therapy, Leukemia, 21 (2007), 2394-2396.
41 A. Quints-Cardama, H. Kantarjian and J. Cortes, Flying under the radar: The new wave of BCR-ABL inhibitors, Nat. Rev. Drug Discov., 6 (2007), 834-848.
42 T. Reya, S. J. Morrison, M. F. Clarke and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105-111.
43 S. Sanga, J. P. Sinek, H. B. Frieboes, M. Ferrari, J. P. Fruehauf and V. Cristini, Mathematical modeling of cancer progression and response to chemotherapy, Expert Rev. Anticancer Ther., 6 (2006), 1361-1376.
44 S. Soverini, S. Colarossi, A. Gnani, G. Rosti, F. Castagnetti, A. Poerio, I. Iacobucci, M. Amabile, E. Abruzzese, E. Orlandi, F. Radaelli, F. Ciccone, M. Tiribelli, R. di Lorenzo, C. Caracciolo, B. Izzo, F. Pane, G. Saglio, M. Baccarani and G. Martinelli, Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia, Clin. Cancer Res., 12 (2006), 7374-7379.
45 G. W. Swan, Role of optimal control theory in cancer chemotherapy, Math. Biosci., 101 (1990), 237-284.
46 A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy, Eur. J. Pharmacol., 625 (2009), 108-121.
47 A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlin. Anal., 47 (2001), 375-386.       
48 E. Weisberg, P. W. Manley, S. W. Cowan-Jacob, A. Hochhaus and J. D. Griffin, Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia, Nat. Rev. Cancer, 7 (2007), 345-356.
49 D. Wodarz and N. L. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific, 2005.
50 J. Zhang, P. L. Yang and N. S. Gray, Targeting cancer with small molecule kinase inhibitors, Nat. Rev. Cancer, 9 (2009), 28-39.

Go to top