Optimal and suboptimal protocols for a mathematical model for
tumor antiangiogenesis in combination with chemotherapy
Pages: 307  323,
Volume 8,
Issue 2,
April
2011
doi:10.3934/mbe.2011.8.307 Abstract
References
Full text (2060.0K)
Related Articles
Urszula Ledzewicz  Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 620261653, United States (email)
Helmut Maurer  Institut für Numerische und Angewandte Mathematik, Universität Münster, D48149 Münster, Germany (email)
Heinz Schättler  Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 631304899, United States (email)
1 
T. Boehm, J. Folkman, T. Browder and M. S. O'Reilly, Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance, Nature, 390 (1997), 404407. 

2 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory," Springer Verlag, Paris, 2003. 

3 
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control," American Institute of Mathematical Sciences, 2007. 

4 
C. Büskens, "Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuerund ZustandsBeschränkungen," Dissertation, Institut für Numerische Mathematik, Universität Münster, Germany, 1998. 

5 
A. d'Onofrio, Rapidly acting antitumoral antiangiogenic therapies, Physical Review E, 76 (2007), Art. No. 031920. 

6 
A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004), 159184. 

7 
A. D'Onofrio and A. Gandolfi, A family of models of angiogenesis and antiangiogenesis anticancer therapy, Mathematical Medicine and Biology, 26 (2009), 6395. 

8 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 1326. 

9 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003), 407424. 

10 
J. Folkman, Antiangiogenesis: new concept for therapy of solid tumors, Annals of Surgery, 175 (1972), 409416. 

11 
J. Folkman, Angiogenesis inhibitors generated by tumors, Molecular Medicine, 1 (1995), 120122. 

12 
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), 47704775. 

13 
R. K. Jain, Normalizing tumor vasculature with antiangiogenic therapy: A new paradigm for combination therapy, Nature Medicine, 7 (2001), 987989. 

14 
R. K. Jain and L. L. Munn, Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents, Principles of Practical Oncology, 21 (2007), 17. 

15 
M. Klagsburn and S. Soker, VEGF/VPF: The angiogenesis factor found?, Current Biology, 3 (1993), 699702. 

16 
R. S. Kerbel, A cancer therapy resistant to resistance, Nature, 390 (1997), 335336. 

17 
R. S. Kerbel, Tumor angiogenesis: Past, present and near future, Carcinogensis, 21 (2000), 505515. 

18 
I. A. K. Kupka, The ubiquity of Fuller's phenomenon, in "Nonlinear Controllability and Optimal Control" (H. Sussmann, Ed.), Marcel Dekker, (1990), 313350. 

19 
U. Ledzewicz, H. Maurer and H. Schättler, Bangbang and singular controls in a mathematical model for combined antiangiogenic and chemotherapy treatments, Proc. 48th IEEE Conference on Decision and Control, Shanghai, China, (2009), 22802285. 

20 
U. Ledzewicz, J. Munden and H. Schättler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models, Discrete and Continuous Dynamical Systems, Series B, 12 (2009), 415438. 

21 
U. Ledzewicz and H. Schättler, Optimal bangbang controls for a 2compartment model in cancer chemotherapy, Journal of Optimization Theory and Applications  JOTA, 114 (2002), 609637. 

22 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183206. 

23 
U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561578. 

24 
U. Ledzewicz and H. Schättler, A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors, Proc. 44th IEEE Conference on Decision and Control, Sevilla, Spain, (2005), 945950. 

25 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 10521079. 

26 
U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy, Mathematical Biosciences, 206 (2007), 320342. 

27 
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis, J. of Theoretical Biology, 252 (2008), 295312. 

28 
U. Ledzewicz and H. Schaettler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), 15011523. 

29 
H. Maurer, C. Büskens, J. H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bangbang controls, Optimal Control: Appliations and Methods, 26 (2005), 129156. 

30 
H. Schaettler, U. Ledzewicz and B. Cardwell, Robustness of optimal controls for a class of mathematical models for tumor antiangiogenesis, Mathematical Biosciences and Engineering (MBE), this volume, 355369. 

31 
A. Swierniak, Modelling combined angiogenic and chemotherapy, Proc. of the Fourteenth National Conference on Applications of Mathematics in Biology and Medicine, Leszno, Poland, (2008), 127133. 

32 
A. Swierniak, Direct and indirect control of cancer populations, Bulletin of the Polish Academy of Sciences, Technical Sciences, 56 (2008), 367378. 

33 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. of Applied Mathematics and Computer Science, 13 (2003), 357368. 

34 
M. I. Zelikin and V. F. Borisov, "Theory of Chattering Control with Applications to Astronautics, Robotics, Economics and Engineering," Birkhäuser, Boston, 1994. 

Go to top
