`a`
Mathematical Biosciences and Engineering (MBE)
 

A mathematical model for chronic wounds
Pages: 253 - 261, Volume 8, Issue 2, April 2011

doi:10.3934/mbe.2011.8.253      Abstract        References        Full text (1672.0K)           Related Articles

Avner Friedman - Mathematical Biosciences Institute and Department of Mathematics, Ohio State University, Columbus, OH 43210, United States (email)
Chuan Xue - Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, United States (email)

1 C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K Hunt, F. Gottrup, G. C. Gurtner and M. T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy, Wound Repair Regen., 17 (2009), 763-771.
2 R. F. Diegelmann and M. C. Evans, Wound healing: An overview of acute, fibrotic and delayed healing, Front Biosci., 9 (2004), 283-289.
3 N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev and R. F. Diegelmann, Impaired wound healing, Clinics in Dermatology, 25 (2007), 19-25.
4 A. J. Singer and R. A. Clark, Cutaneous wound healing, N. Engl. J. Med., 341 (1999), 738-746.
5 F. Werdin, M. Tennenhaus, H. Schaller and H. Rennekampff, Evidence-based management strategies for treatment of chronic wounds, Eplasty, 9:e19, (2009).
6 P. D. Dale, J. A. Sherratt and P. K. Maini, A mathematical model for collagen fibre formation during foetal and adult dermal wound healing, Proc. Biol. Sci., 263 (1996), 653-660.
7 G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue, Math. Biosci., 136 (1996), 35-63.
8 G. Pettet, M. A. J. Chaplain, D. L. S. Mcelwain and H. M. Byrne, On the role of angiogenesis in wound healing, Proc. R. Soc. Lond. B, 263 (1996), 1487-1493.
9 H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment, J. Theor. Med., 2 (2000), 175-197.
10 R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model, Proc. Nat. Acad. Sci. U.S.A., 105 (2008), 2628-2633.
11 Y. Dor, V. Djonov and E. Keshet, Induction of vascular networks in adult organs: Implications to proangiogenic therapy, Ann. N.Y. Acad. Sci., 995 (2003), 208-216.
12 Y. Dor, V. Djonov and E. Keshet, Making vascular networks in the adult: Branching morphogenesis without a roadmap, Trends in Cell Biology, 13 (2003), 131-136.
13 S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt, Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies, Bull. Math. Biol., 64 (2002), 673-702.
14 A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of flow in 2d and 3d vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies, Mathematical and Computer Modelling, 41 (2005), 1137-1156.       
15 A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899.
16 C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, Proc. Nat. Acad. Sci. USA, 106 (2009), 16782-16787.
17 A. Friedman, C. Huang and J. Yong, Effective permeability of the boundary of a domain, Comm. Partial Differential Equations, 20 (1995), 59-102.       
18 S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould and C. K. Sen, Characterization of a pre-clinical model of chronic ischemic wound, Physiol. Genomics, 37 (2009), 211-224.
19 A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040.       

Go to top