`a`
Journal of Modern Dynamics (JMD)
 

Tori with hyperbolic dynamics in 3-manifolds
Pages: 185 - 202, Issue 1, January 2011

doi:10.3934/jmd.2011.5.185      Abstract        References        Full text (262.9K)           Related Articles

Federico Rodriguez Hertz - IMERL-Facultad de Ingeniería, Universidad de la República, ulio Herrera y Reissig 565, CC 30, 11300 Montevideo, Uruguay (email)
María Alejandra Rodriguez Hertz - IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay (email)
Raúl Ures - IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay (email)

1 M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, Modern Dynamical Systems and Applications, 307-312, Cambridge Univ. Press, Cambridge, (2004).       
2 M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the $3$-torus, J. Mod. Dyn., 3 (2009), 1-11.       
3 M. Brin and Ya Pesin, Partially hyperbolic dynamical systems, Math. USSR Izv., 8 (1974), 177-218.       
4 D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541-580.       
5 D. Calegary, "Foliations and the Geometry of 3-Manifolds,'' Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.       
6 D. Calegary, M. Freedman and K. Walker, Positivity of the universal pairing in 3-dimensions, Jounal of the AMS, 23 (2010), 107-188.       
7 D. Epstein, Periodic flows on 3-manifolds, Ann. Math., 2nd Series, 95 (1972), 66-82.       
8 J. Franks, Anosov diffeomorphisms, 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 61-93, Amer. Math. Soc., Providence, R.I.       
9 A. Hammerlindl, "Leaf Conjugacies of the Torus,'' Phd Thesis, University of Toronto, 2009.       
10 M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'' Lecture Notes in Math. 583, Springer Verlag, 1977.       
11 A. Hatcher, "Notes on Basic 3-Manifold Topology,'' author's webpage at Cornell Math. Dep. http://www.math.cornell.edu/ hatcher/3M/3M.pdf
12 W. Jaco and P. Shalen, "Seifert Fibered Spaces in 3-Manifolds,'' Memoirs AMS, 21 (1979), viii+192 pp.       
13 K. Johannson, "Homotopy Equivalences of 3-Manifolds with Boundaries,'' Lecture Notes in Math. 761, Spriinger Verlag, Berlin-New York, 1977.       
14 H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht der Deutschen Mathematiker-Vereinigung, 38 (1929), 248-260.
15 J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. of Math., 84 (1962), 1-7.       
16 H. Rosenberg, Foliations by planes, Topology, 7 (1968), 131-138.       
17 R. Roussarie, Sur les feuilletages des variétés de dimension trois, (French), Ann. Inst. Fourier (Grenoble), 21 (1971), 13-82.       
18 F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, "A Survey of Partially Hyperbolic Dynamics,'' Partially hyperbolic dynamics, laminations, and Teichmüller flow, 35-87, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007.       
19 F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.       
20 F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., 2 (2008), 187-208.       
21 F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A non-dynamically coherent example in $\mathbbT^3$, in preparation, 2009.
22 F. Waldhausen, Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math., 3, (1967) 308-333; ibid., 4 (1967), 87-117.       

Go to top