Integrability and Lyapunov exponents
Pages: 107  122,
Issue 1,
January
2011
doi:10.3934/jmd.2011.5.107 Abstract
References
Full text (218.5K)
Related Articles
Andy Hammerlindl  Instituto Nacional deMatemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, Brazil (email)
1 
D. V. Anosov, "Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature," Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), Translated from the Russian by S. Feder American Mathematical Society, Providence, R.I. 1969, iv+235 pp. 

2 
L. Barriera and C. Valls, Center manifolds for nonuniformly partially hyperbolic diffeomorphisms, Journal de Mathématiques Pures et Appliquées, 84 (2005), 16931715. 

3 
M. Brin and Ja. Pesin, Partially hyperbolic dynamical systems, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170212. 

4 
K. Burns, F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with onedimensional center, Discrete and Continuous Dynamical Systems, 22 (2008), 7588. 

5 
K. Burns and A. Wilkinson, Dynamical coherence and center bunching, Discrete and Continuous Dynamical Systems, 22 (2008), 89100. 

6 
K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Annals of Math., 171 (2010), 451489. 

7 
X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds I: Manifolds associated to nonresonant subspaces, Indiana Univ. Math. J., 52 (2003), 283328. 

8 
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, Partially Hyperbolic Dynamics, Lamnations, and Teichmüller Flow, 3587, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007. 

9 
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1Dcenter bundle, Invent. Math., 172 (2008), 353381. 

10 
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," volume 583 of "Lecture Notes in Mathematics," Vol. 583, SpringerVerlag, BerlinNew York, 1977. 

11 
R. Mañé, "Ergodic Theory and Differentiable Dynamics," Translated from the Portuguese by Silvio Levy. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8, SpringerVerlag, Berlin, 1987. 

12 
V. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197210. 

13 
V. Oseledets, Oseledets theorem, Scholarpedia, 3 (2008), 1846. 

14 
F. Rampazzo, Frobeniustype theorems for Lipschitz distributions, Journal of Differential Equations, 243 (2007), 270300. 

15 
S. Simić, Lipschitz distributions and Anosov flows, Proc. of the Amer. Math. Soc., 124 (1996), 18691877. 

16 
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747817. 

17 
A. Wilkinson, Stable ergodicity of the timeone map of a geodesic flow, Ergod. Th. and Dynam. Sys., 18 (1998), 15451588. 

Go to top
