`a`
Mathematical Control and Related Fields (MCRF)
 

Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential
Pages: 119 - 127, Volume 1, Issue 1, March 2011

doi:10.3934/mcrf.2011.1.119      Abstract        References        Full text (364.9K)           Related Articles

Jian Zhang - College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, China (email)
Shihui Zhu - College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China (email)
Xiaoguang Li - College of Economics, Sichuan Normal University, Chengdu 610066, China (email)

1 R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.       
2 R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523.       
3 T. Cazenave, "Semilinear Schrödinger Equations," "Courant Lecture Notes in Mathematics," 10, NYU, CIMS, AMS, 2003.
4 M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension, Phys. Rev. A., 38 (1988), 3837-3834.
5 X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential, Chinese Ann. Math. Ser. A, 26 (2005), 31-38; (translation in Chinese J. Contemp. Math., 26 (2005), 35-42.       
6 X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential, Differential Integral Equations, 19 (2006), 761-771.       
7 M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.       
8 F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.       
9 F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation, J. Amer. Math. Soc., 19 (2005), 37-90.       
10 F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.       
11 F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704.       
12 F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.       
13 Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274.       
14 P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609.       
15 W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.       
16 Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.       
17 M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length, Phys. Lett. A, 247 (1998), 287-293.
18 M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.       
19 J. Zhang, Stability of attractive Bose-Einstein condensate, J. Statist. Phys., 101 (2000), 731-746.       
20 J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.       

Go to top