Global wellposedness and asymptotic behavior of a class of initialboundaryvalue problem of the
KortewegDe Vries equation on a finite domain
Pages: 61  81,
Volume 1,
Issue 1,
March
2011
doi:10.3934/mcrf.2011.1.61 Abstract
References
Full text (455.9K)
Related Articles
Ivonne Rivas  Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Oh 45221, United States (email)
Muhammad Usman  Department of Mathematics, University of Dayton, Dayton, OH 45431, United States (email)
BingYu Zhang  Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Oh 45221, United States (email)
1 
J. L. Bona, S. Sun and B.Y. Zhang, A nonhomogeneous boundaryvalue problem for the Kortewegde Vries equation in a quarter plane, Trans. American Math. Soc., 354 (2001), 427490. 

2 
J. L. Bona, S. M. Sun and B.Y. Zhang, Forced oscillations of a damped Kortewegde Vries equation in a quarter plane, Comm. Contemp. Math, 5 (2003), 369400. 

3 
J. L. Bona, S. Sun and B.Y. Zhang, A nonhomogeneous boundary value problem for the KdV equation posed on a finite domain, Commun. Partial Differential Eq., 28 (2003), 13911436. 

4 
J. L. Bona, S. Sun and B.Y. Zhang, Nonhomogeneous boundary value problems for the Kortewegde Vries and the Kortewegde VriesBurgers equations in a quarter plane, Annales de l'Institut Henri Poincaré  Analyse non linéaire, 25 (2008), 11451185. 

5 
J. L. Bona, S. Sun and B.Y. Zhang, The Kortewegde Vries equation on a finite domain II, J. Diff. Eqns, 247 (2009), 25582596. 

6 
B. A. Bubnov, Generalized boundary value problems for the Kortewegde Vries equation in bounded domain, Differential Equations, 15 (1979), 1721. 

7 
B. A. Bubnov, Solvability in the large of nonlinear boundaryvalue problem for the Kortewegde Vries equations, Differential Equations, 16 (1980), 2430. 

8 
J. Colliander and C. Kenig, The generalized Kortewegde Vries equation on the half line, Comm. Partial Differential Equations, 27 (2002), 21872266. 

9 
T. Colin and J.M. Ghidaglia, An initialboundaryvalue problem for the Kortewegde Vries Equation posed on a finite interval, Adv. Differential Equations, 6 (2001), 14631492. 

10 
P. Constantin, C. Foias, B. Nicolaenko and R. Temam, "Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations," Applied Mathematical Sciences, 70, SpringerVerlag, New YorkBerlin, 1989. 

11 
W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 14091498. 

12 
A. V. Faminskii, The Cauchy problem and the mixed problem in the half strip for equation of Kortewegde Vries type, (Russian) Dinamika Sploshn. Sredy, 162 (1983), 152158. 

13 
A. V. Faminskii, A mixed problem in a semistrip for the Kortewegde Vries equation and its generalizations, (Russian), Dinamika Sploshn. Sredy, 258 (1988), 5494; (English transl. in Trans. Moscow Math. Soc., 51 (1989), 5391). 

14 
A. V. Faminskii, Mixed problms for the Kortewegde Vries equation, Sbornik: Mathematics, 190 (1999), 903935. 

15 
A. V. Faminskii, On an initial boundary value problem in a bounded domain for the generalized Kortewegde Vries equation, International Conference on Differential and Functional Differential Equations, (Moscow, 1999), Funct. Differ. Equ., 8 (2001), 183194. 

16 
A. V. Faminskii, An initial boundaryvalue problem in a halfstrip for the Kortewegde Vries equation in fractional order Sobelev Spaces, Comm. Partial Differential Eq., 29 (2004), 16531695. 

17 
A. V. Faminskii, Global wellposedness of two initialboundaryvalue problems for the Kortewegde Vries equation, Differential Integral Equations, 20 (2007), 601642. 

18 
J.M. Ghidaglia, Weakly damped forced Kortewegde Vries equations behave as a finitedimensional dynamical system in the long time, J. Differential Eqns., 74 (1988), 369390. 

19 
J.M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Eqns., 110 (1994), 356359. 

20 
J. Holmer, The initialboundary value problem for the Kortewegde Vries equation, Comm. Partial Differential Equations, 31 (2006), 11511190. 

21 
T. Kato, "Perturbation Theory for Linear Operators," Dir Grundlehren der mathematischen Wissenschaften, 132, Springer, New York, 1966. 

22 
J. B. Keller and L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations, Comm. Pure and Appl. Math., 19 (1966), 371420. 

23 
J. U. Kim, Forced vibration of an aeroelastic plate, J. Math. Anal. Appl., 113 (1986), 454467. 

24 
G. Kramer and B.Y. Zhang, Nonhomogeneous boundary value problems of the KdV equation on a bounded domain, Journal Syst. Sci. & Complexity, 23 (2010), 499526. 

25 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, SpringerVerlag, New York, 1983. 

26 
I. Rivas, G. Kramer and B.Y. Zhang, Wellposedness of a class of initialboundaryvalue problem for the Kortwegde Vries equation on a bounded domain, preprint, arXiv:math/1012.1057. 

27 
P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic differential equations, Comm. Pure Appl. Math., 20 (1967), 145205. 

28 
P. H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), 3168. 

29 
G. R. Sell and Y. C. You, Inertial manifolds: the nonselfadjoint case, J. Diff. Eqns., 96 (1992), 203255. 

30 
L. Tartar, Interpolation non linéaire et régularité, J. Funct. Anal, 9 (1972), 469489. 

31 
O. Vejvoda, "Partial Differential Equations: TimePeriodic Solutions," Mrtinus Nijhoff Publishers, 1981. 

32 
C. E. Wayne, Periodic solutions of nonlinear partial differential equations, Notices Amer. Math. Soc., 44 (1997), 895902. 

33 
M. Usman and B.Y. Zhang, Forced oscillations of the Kortewegde Vries equation on a bounded domain and their stability, J. Systems Sciences and Complexity, 20 (2007), 1524. 

34 
M. Usman and B.Y. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Discrete and Continuous Dynamical Systems, 26 (2010), 15091523. 

35 
Y. Yang and B.Y. Zhang, Forced oscillations of a damped BenjaminBonaMahony equation in a quarter plane, "Control Theory of Partial Differential Equations," Lect. Notes Pure Appl. Math., 242, Chapman & Hall/CRC, Boca Raton, FL, 2005, 375386. 

36 
B.Y. Zhang, Forced oscillations of a regularized longwave equation and their global stability, in "Differential Equations and Computational Simulations" (Chengdu, 1999), World Sci. Publishing, River Edge, NJ, 2000, 456463. 

37 
B.Y. Zhang, Forced oscillation of the Kortewegde VriesBurgers equation and its stability, in "Control of Nonlinear Distributed Parameter Systems" (College Station, TX, 1999), Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001, 337357. 

Go to top
