Electronic Research Announcements in Mathematical Sciences (ERA-MS)

On subgroups of the Dixmier group and Calogero-Moser spaces
Pages: 12 - 21, January 2011

doi:10.3934/era.2011.18.12      Abstract        References        Full text (383.8K)           Related Articles

Yuri Berest - Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, United States (email)
Alimjon Eshmatov - Department of Mathematics, University of Arizona, Tucson, AZ 85721-0089, United States (email)
Farkhod Eshmatov - Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, United States (email)

1 J. Alev, Action de groupes sur $A_1(\c)$, Lecture Notes in Math. 1197, Springer, Berlin, 1986, 1-9.       
2 R. C. Alperin, Homology of the group of automorphisms of $ k[x,y] $, J. Pure Appl. Algebra, 15 (1979), 109-115.       
3 H. Bass, "Algebraic $K$-Theory," W. A. Benjamin Inc., New York-Amsterdam, 1968.       
4 Yu. Berest and O. Chalykh, $A_{\infty}$-modules and Calogero-Moser spaces, J. reine angew Math., 607 (2007), 69-112.       
5 Yu. Berest and G. Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann., 318 (2000), 127-147.       
6 Yu. Berest and G. Wilson, Classification of rings of differential operators on affine curves, Internat. Math. Res. Notices, 2 (1999), 105-109.       
7 Yu. Berest and G. Wilson, Ideal classes of the Weyl algebra and noncommutative projective geometry (with an Appendix by M. Van den Bergh), Internat. Math. Res. Notices, 26 (2002), 1347-1396.       
8 Yu. Berest and G. Wilson, Mad subalgebras of rings of differential operators on curves, Adv. Math., 212 (2007), 163-190.       
9 Yu. Berest and G. Wilson, Differential isomorphism and equivalence of algebraic varieties in "Topology, Geometry and Quantum Field Theory" (Ed. U. Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press. Cambridge, 2004, pp. 98-126.       
10 P. M. Cohn, The automorphism group of the free algebras of rank two, Serdica Math. J., 28 (2002), 255-266.       
11 J. Dixmier, Sur les alg\`ebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209-242.       
12 V. Ginzburg, Non-commutative symplectic geometry, quiver varieties, and operads, Math. Res. Lett., 8 (2001), 377-400.       
13 M. H. Gizatullin and V. I. Danilov, Automorphisms of affine surfaces. I, II, Math. USSR Izv., 9 (1975), 493-534; Math. USSR Izv., 11 (1977), 51-98.       
14 K. M. Kouakou, "Isomorphismes Entre Algèbres d'opérateurs Différentielles sur les Courbes Algébriques Affines," Thèse de Doctorat, Universite Claude Bernard-Lyon I, 1994.
15 L. Makar-Limanov, Automorphisms of a free algebra with two generators, Funct. Anal. Appl., 4 (1970), 262-264.       
16 L. Makar-Limanov, On automorphisms of the Weyl algebra, Bull. Soc. Math. France, 112 (1984), 359-363.       
17 J.-P. Serre, "Trees," Springer-Verlag, Berlin, 1980.       
18 I. R. Shafarevich, "Collected Mathematical Papers," Springer, Berlin, 1989, pp. 430, 607.       
19 J. T. Stafford, Endomorphisms of right ideals of the Weyl algebra, Trans. Amer. Math. Soc., 299 (1987), 623-639.       
20 J. T. Stafford and M. Van den Bergh, Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc., 38 (2001), 171-216.       
21 G. Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian (with an Appendix by I. G. Macdonald), Invent. Math., 133 (1998), 1-41.       
22 G. Wilson, Bispectral commutative ordinary differential operators, J. reine angew. Math., 442 (1993), 177-204.       
23 D. Wright, Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc., 331 (1992), 281-300.       

Go to top