CelisDennisTapia based approach
to quadratic fractional programming problems
with two quadratic constraints
Pages: 83  98,
Volume 1,
Issue 1,
March
2011
doi:10.3934/naco.2011.1.83 Abstract
References
Full text (235.3K)
Related Articles
Ailing Zhang  Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, YoshidaHonmachi, SakyoKu, Kyoto 6068501, Japan (email)
Shunsuke Hayashi  Department of Applied Mathematics and Physics,, Graduate School of Informatics, Kyoto University, YoshidaHonmachi, SakyoKu, Kyoto 6068501, Japan (email)
1 
A. Beck, A. BenTal and M. Teboulle, Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 425445. 

2 
A. Beck and Y. C. Eldar, Strong duality in nonconvex quadratic optimization with two quadratic constraints, SIAM Journal on Optimization, 17 (2006), 844860. 

3 
H. P. Benson, Fractional programming with convex quadratic forms and functions, European Journal of Operational Research, 173 (2006), 351369. 

4 
G. R. Bitran and T. L. Magnanti, Duality and sensitivity analysis for fractional programs, Operations Research, 24 (1976), 675699. 

5 
M. R. Celis, J. E. Dennis and R. A. Tapia, A trust region strategy for nonlinear equality constrained optimization, in "Numerical Optimization" (eds. P. T. Boggs, R. H. Byrd, R. B. Schnabel), SIAM, Philadelphia, (1985), 7182. 

6 
A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Research Logistics Quarterly, 9 (1962), 181186. 

7 
X. Chen and Y. Yuan, On local solutions of the CelisDennisTapia subproblem, SIAM Journal on Optimization, 10 (2000), 359383. 

8 
X. Chen and Y. Yuan, On maxima of dual function of the CDT subproblem, Journal of Computational Mathematics, 19 (2001), 113124. 

9 
X. Chen and Y. Yuan, Optimality conditions for CDT subproblem, in "Numerical Linear Algebra and Optimization" (eds. Y. Yuan), Science Press, Beijing, New York, (1999), 111121. 

10 
A. R. Conn, N. I. M. Gould and Ph. L. Toint, "TrustRegion Methods," SIAM, Philadelphia, 2000. 

11 
J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191207. 

12 
W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492498. 

13 
J. Gotoh and H. Konno, Maximization of the ratio of two convex quadratic functions over a polytope, Computational Optimization and Applications, 20 (2001), 4360. 

14 
T. Ibaraki, Parametric approaches to fractional programs, Mathematical Programming, 26 (1983), 345362. 

15 
T. Ibaraki, H. Ishii, J. Iwase, T. Hasegawa and H. Mine, Algorithms for quadratic fractional programming problems, Journal of Operational Research Society of Japan, 19 (1976), 174191. 

16 
R. Jagannathan, On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 12 (1966), 609615. 

17 
G. Li and Y. Yuan, Compute a CelisDennisTapia step, Journal of Computational Mathematics, 23 (2005), 463478. 

18 
J. Peng and Y. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic constraints, SIAM Journal on Optimization, 7 (1997), 579594. 

19 
M. J. D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization, Mathematical Programming, 49 (1991), 189211. 

20 
J. Von Neumann, Über ein es Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpuntsatzes, in "Ergebnisse eines mathematicschen Kolloquiums (8)" (eds. K. Menger), Leipzig und Wien, (1937), 7383. 

21 
Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245267. 

22 
Y. Yuan, On a subproblem of trust region algorithms for constrained optimization, Mathematical Programming, 47 (1990), 5363. 

23 
Y. Yuan, A dual algorithm for minimizing a quadratic function with two quadratic constraints, Journal of Computational Mathematics, 9 (1991), 348359. 

24 
Y. Zhang, Computing a CelisDennisTapia trustregion step for equality constrained optimization, Mathematical Programming, 55 (1992), 109124. 

Go to top
