`a`
Numerical Algebra, Control and Optimization (NACO)
 

Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints
Pages: 83 - 98, Volume 1, Issue 1, March 2011

doi:10.3934/naco.2011.1.83      Abstract        References        Full text (235.3K)           Related Articles

Ailing Zhang - Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto 606-8501, Japan (email)
Shunsuke Hayashi - Department of Applied Mathematics and Physics,, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto 606-8501, Japan (email)

1 A. Beck, A. Ben-Tal and M. Teboulle, Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 425-445.       
2 A. Beck and Y. C. Eldar, Strong duality in nonconvex quadratic optimization with two quadratic constraints, SIAM Journal on Optimization, 17 (2006), 844-860.       
3 H. P. Benson, Fractional programming with convex quadratic forms and functions, European Journal of Operational Research, 173 (2006), 351-369.       
4 G. R. Bitran and T. L. Magnanti, Duality and sensitivity analysis for fractional programs, Operations Research, 24 (1976), 675-699.       
5 M. R. Celis, J. E. Dennis and R. A. Tapia, A trust region strategy for nonlinear equality constrained optimization, in "Numerical Optimization" (eds. P. T. Boggs, R. H. Byrd, R. B. Schnabel), SIAM, Philadelphia, (1985), 71-82.       
6 A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.       
7 X. Chen and Y. Yuan, On local solutions of the Celis-Dennis-Tapia subproblem, SIAM Journal on Optimization, 10 (2000), 359-383.       
8 X. Chen and Y. Yuan, On maxima of dual function of the CDT subproblem, Journal of Computational Mathematics, 19 (2001), 113-124.       
9 X. Chen and Y. Yuan, Optimality conditions for CDT subproblem, in "Numerical Linear Algebra and Optimization" (eds. Y. Yuan), Science Press, Beijing, New York, (1999), 111-121.
10 A. R. Conn, N. I. M. Gould and Ph. L. Toint, "Trust-Region Methods," SIAM, Philadelphia, 2000.
11 J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207.       
12 W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492-498.       
13 J. Gotoh and H. Konno, Maximization of the ratio of two convex quadratic functions over a polytope, Computational Optimization and Applications, 20 (2001), 43-60.       
14 T. Ibaraki, Parametric approaches to fractional programs, Mathematical Programming, 26 (1983), 345-362.       
15 T. Ibaraki, H. Ishii, J. Iwase, T. Hasegawa and H. Mine, Algorithms for quadratic fractional programming problems, Journal of Operational Research Society of Japan, 19 (1976), 174-191.       
16 R. Jagannathan, On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 12 (1966), 609-615.       
17 G. Li and Y. Yuan, Compute a Celis-Dennis-Tapia step, Journal of Computational Mathematics, 23 (2005), 463-478.       
18 J. Peng and Y. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic constraints, SIAM Journal on Optimization, 7 (1997), 579-594.       
19 M. J. D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization, Mathematical Programming, 49 (1991), 189-211.       
20 J. Von Neumann, Über ein es Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpuntsatzes, in "Ergebnisse eines mathematicschen Kolloquiums (8)" (eds. K. Menger), Leipzig und Wien, (1937), 73-83.
21 Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245-267.       
22 Y. Yuan, On a subproblem of trust region algorithms for constrained optimization, Mathematical Programming, 47 (1990), 53-63.       
23 Y. Yuan, A dual algorithm for minimizing a quadratic function with two quadratic constraints, Journal of Computational Mathematics, 9 (1991), 348-359.       
24 Y. Zhang, Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization, Mathematical Programming, 55 (1992), 109-124.       

Go to top