A modified FletcherReevesType derivativefree method for symmetric nonlinear
equations
Pages: 71  82,
Volume 1,
Issue 1,
March
2011
doi:10.3934/naco.2011.1.71 Abstract
References
Full text (194.9K)
Related Articles
DongHui Li  School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China (email)
XiaoLin Wang  College of Mathematics and Econometrics, Hunan University, Changsha, 410082, China (email)
1 
M. AlBaali, Descent property and global convergence of the FletcherReeves method with inexact line search, IMA Journal of Numerical Analysis, 5 (1985), 121124. 

2 
S. Bellavia and B. Morini, A globally convergent NewtonGMRES subspace method for systems of nonlinear equations, SIAM Journal on Scientific Computing, 23 (2001), 940960. 

3 
A. Griewank, The “global” convergence of Broydenlike methods with suitable line search, Journal of Australia Mathematical Society, Ser. B, 28 (1986), 7592. 

4 
W. Cheng and D. H. Li, A derivativefree nonmonotone line search and its application to the spectral residual method, IMA Journal of Numerical Analysis, 29 (2009), 814825. 

5 
Y. H. Dai and Y. Yuan, Convergence of the FletcherReeves method under a generalized Wolfe search, Journal of Computational Mathematics, 2 (1996), 142148. 

6 
Y. H. Dai and Y. Yuan, Convergence properties of the FletcherReeves method, IMA Journal of Numerical Analysis, 16 (1996), 155164. 

7 
Y. H. Dai and Y. Yuan, "Nonlinear Conjugate Gradient Methods," Shanghai Science and Technology Publisher, Shanghai, 2000. 

8 
R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Computer Journal, 7 (1964), 149154. 

9 
J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization, 2 (1992), 2142. 

10 
G. Z. Gu, D. H. Li, L. Qi and S. Z. Zhou, Descent directions of QuasiNewton methods for symmetric nonlinear equations, SIAM Journal on Numerical Analysis, 40 (2003), 17631774. 

11 
J. Y. Han, G. H. Liu and H. X. Yin, Convergence properties of conjugate gradient methods with strong Wolfe linesearch, Systems Science and Mathematical Science, 11 (1998), 112116. 

12 
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, 2 (2006), 3558. 

13 
Y. F. Hu and C. Storey, Global convergence result for conjugate gradient methods, Journal of Optimization Theory and Applications, 71 (1991), 399405. 

14 
W. La Cruz and M. Raydan, Nonmonotone spectral methods for largescale nonlinear systems, Optimization Methods and Software, 18 (2003), 583599. 

15 
W. La Cruz, J.M. Martínez and M. Raydan, Spectral resdual method without gradient information for solving largescale nonlinear systems of equations, Mathematics of Computation, 75 (2006), 14291448. 

16 
G. H. Liu, J. Y. Han and H. X. Yin, Global convergence of the FletcherReeves algorithm with an inexact line search, Applied Mathematics, Journal of Chinese Universities, Ser. B, 10 (1995), 7582. 

17 
D. H. Li and W. Cheng, Recent progress in the global convergence of quasiNewton methods for nonlinear equations, Hokkaido Journal of Mathematics, 36 (2007), 729743. 

18 
D. H. Li and M. Fukushima, A globally and superlinearly convergent GaussNewton based BFGS method for symmetric nonlinear equations, SIAM Journal on Numerical Analysis, 37 (1999), 152172. 

19 
D. H. Li and M. Fukushima, A derivativefree line search and global convergence of Broydenlike methods for nonlinear equations, Optimization Methods and Software, 13 (2000), 181201. 

20 
Q. Li and D. H. Li, A class of derivativefree methods for largescale nonlinear monotone equations, IMA Journal of Numerical Analysis, (to appear). 

21 
M. J. D. Powell, Some convergence properties of the conjugate gradient method, Mathematical Programming, 11 (1976), 4249. 

22 
M. J . D. Powell, Restart procedures of the conjugate gradient method, Mathematical Programming, 2 (1977), 241254. 

23 
Q. Yan, X. Z. Peng and D. H. Li, A globally convergent derivativefree method for solving largescale nonlinear monotone equations, Journal of Computational and Applied Mathematics, 234 (2010), 649657. 

24 
J. Zhang and D. H. Li, A norm descent BFGS method for solving KKT systems of symmetric variational inequality problems, Optimization Methods and Software, 22 (2007), 237252. 

25 
L. Zhang, W. Zhou and D. H. Li, Global convergence of a modified FletcherReeves conjugate gradient method with Armijotype line search, Numerische Mathematik, 104 (2006), 561572. 

26 
W. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations, Journal of Computational Mathematics, 25 (2007), 8996. 

27 
W. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations, Mathematics of Computation, 77 (2008), 22312240. 

28 
G. Zoutendijk, Nonlinear Programming, Computational Methods, in "Integer and Nonlinear Programming" (eds. J. Abadie), NorthHolland, Amsterdam, (1970), 3786. 

Go to top
