Convergence analysis of sparse quasiNewton updates with
positive definite matrix completion for twodimensional functions
Pages: 61  69,
Volume 1,
Issue 1,
March
2011
doi:10.3934/naco.2011.1.61 Abstract
References
Full text (161.3K)
Related Articles
Yuhong Dai  State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, P.O. Box 2719, Beijing 100080, China (email)
Nobuo Yamashita  Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyoku, Kyoto, 6068501, Japan (email)
1 
R. Byrd and J. Nocedal, A tool for the analysis of quasiNewton methods with application to unconstrained optimization, SIAM Journal on Numerical Analysis, 26 (1989), 727739. 

2 
R. Byrd, J. Nocedal and Y. Yuan, Global convergence of a class of quasiNewton methods on convex problems, SIAM Journal on Numerical Analysis, 24 (1987), 11711190. 

3 
M. H. Cheng and Y. H. Dai, A new sparse quasiNewton update method, Research report, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 2010. 

4 
Y. H. Dai, Convergence properties of the BFGS algorithm, SIAM Journal on Optimization, 13 (2003), 693701. 

5 
Y. H. Dai, A perfect example for the BFGS method, Research report, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 2010. 

6 
Y. H. Dai and N. Yamashita, Analysis of sparse quasiNewton updates with positive definite matrix completion, Research report, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 2007. 

7 
J. E. Dennis, Jr. and J. J. MorĂ©, QuasiNewton method, motivation and theory, SIAM Review, 19 (1977), 4689. 

8 
R. Fletcher, An optimal positive definite update for sparse Hessian matrices, SIAM Journal on Optimization, 5 (1995), 192218. 

9 
M. Fukuda, M. Kojima, K. Murota and K. Nakata, Exploiting sparsity in semidefinite programming via matrix completion I: General frameworks, SIAM Journal on Optimization, 11 (2000), 647674. 

10 
A. Griewank and Ph. L. Toint, On the unconstrained optimization of partially separable objective functions, in "Nonlinear Optimization 1981" (ed. M. J. D. Powell), Academic Press (London), (1982), 301312. 

11 
D. H. Li and M. Fukushima, On the global convergence of BFGS method for nonconvex unconstrained optimization problems, SIAM Journal on Optimization, 11 (2001), 10541064. 

12 
D. H. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, Journal of Computational and Applied Mathematics, 129 (2001), 1535. 

13 
D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45 (1989), 503528. 

14 
W. F. Mascarenhas, The BFGS algorithm with exact line searches fails for nonconvex functions, Mathematical Programming, 99 (2004), 4961. 

15 
J. Nocedal, Updating quasiNewton matrices with limited storage, Mathematics of Computation, 35 (1980), 773782. 

16 
M. J. D. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in "Nonlinear Programming, SIAMAMS Proceedings Vol. IX" (eds. R. W. Cottle and C. E. Lemke), SIAM, Philadelphia, PA, (1976), 5372. 

17 
D. C. Sorensen, Collinear scaling and sequential estimation in sparse optimization algorithm, Mathematical Programming Study, 18 (1982), 135159. 

18 
P. L. Toint, On sparse and symmetric matrix updating subject to a linear equation, Mathematics of Computation, 31 (1977), 954961. 

19 
N. Yamashita, Sparse quasiNewton updates with positive definite matrix completion, Mathematical Programming, 115 (2008), 130. 

20 
Y. Yuan, "Numerical Methods for Nonlinear Programming," Shanghai Scientific & Technical Publishers, 1993 (in Chinese). 

Go to top
