`a`
Numerical Algebra, Control and Optimization (NACO)
 

Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions
Pages: 61 - 69, Volume 1, Issue 1, March 2011

doi:10.3934/naco.2011.1.61      Abstract        References        Full text (161.3K)           Related Articles

Yuhong Dai - State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, P.O. Box 2719, Beijing 100080, China (email)
Nobuo Yamashita - Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan (email)

1 R. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained optimization, SIAM Journal on Numerical Analysis, 26 (1989), 727-739.       
2 R. Byrd, J. Nocedal and Y. Yuan, Global convergence of a class of quasi-Newton methods on convex problems, SIAM Journal on Numerical Analysis, 24 (1987), 1171-1190.       
3 M. H. Cheng and Y. H. Dai, A new sparse quasi-Newton update method, Research report, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 2010.
4 Y. H. Dai, Convergence properties of the BFGS algorithm, SIAM Journal on Optimization, 13 (2003), 693-701.       
5 Y. H. Dai, A perfect example for the BFGS method, Research report, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 2010.
6 Y. H. Dai and N. Yamashita, Analysis of sparse quasi-Newton updates with positive definite matrix completion, Research report, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 2007.
7 J. E. Dennis, Jr. and J. J. MorĂ©, Quasi-Newton method, motivation and theory, SIAM Review, 19 (1977), 46-89.       
8 R. Fletcher, An optimal positive definite update for sparse Hessian matrices, SIAM Journal on Optimization, 5 (1995), 192-218.       
9 M. Fukuda, M. Kojima, K. Murota and K. Nakata, Exploiting sparsity in semidefinite programming via matrix completion I: General frameworks, SIAM Journal on Optimization, 11 (2000), 647-674.       
10 A. Griewank and Ph. L. Toint, On the unconstrained optimization of partially separable objective functions, in "Nonlinear Optimization 1981" (ed. M. J. D. Powell), Academic Press (London), (1982), 301-312.       
11 D. H. Li and M. Fukushima, On the global convergence of BFGS method for nonconvex unconstrained optimization problems, SIAM Journal on Optimization, 11 (2001), 1054-1064.       
12 D. H. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, Journal of Computational and Applied Mathematics, 129 (2001), 15-35.       
13 D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45 (1989), 503-528.       
14 W. F. Mascarenhas, The BFGS algorithm with exact line searches fails for nonconvex functions, Mathematical Programming, 99 (2004), 49-61.       
15 J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation, 35 (1980), 773-782.       
16 M. J. D. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in "Nonlinear Programming, SIAM-AMS Proceedings Vol. IX" (eds. R. W. Cottle and C. E. Lemke), SIAM, Philadelphia, PA, (1976), 53-72.       
17 D. C. Sorensen, Collinear scaling and sequential estimation in sparse optimization algorithm, Mathematical Programming Study, 18 (1982), 135-159.       
18 P. L. Toint, On sparse and symmetric matrix updating subject to a linear equation, Mathematics of Computation, 31 (1977), 954-961.       
19 N. Yamashita, Sparse quasi-Newton updates with positive definite matrix completion, Mathematical Programming, 115 (2008), 1-30.       
20 Y. Yuan, "Numerical Methods for Nonlinear Programming," Shanghai Scientific & Technical Publishers, 1993 (in Chinese).

Go to top