A MumfordShah levelset approach for the inversion and
segmentation of SPECT/CT data
Pages: 137  166,
Volume 5,
Issue 1,
February
2011
doi:10.3934/ipi.2011.5.137 Abstract
References
Full text (2287.4K)
Related Articles
Esther Klann  Industrial Mathematics Institute, Johannes Kepler University Linz, Altenbergerstraβe 69, A4040 Linz, Austria (email)
Ronny Ramlau  Industrial Mathematics Institute, Johannes Kepler University Linz, Altenbergerstraβe 69, A4040 Linz, Austria (email)
Wolfgang Ring  Institut für Mathematik, Universität Graz, Heinrichstrasse 36, A8010 Graz, Austria (email)
1 
G. Aubert and P. Kornprobst, "Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations, with a Foreword by Olivier Faugeras," SpringerVerlag, New York, 2002. 

2 
H. B. Ameur, M. Burger and B. Hackl, Level set methods for geometric inverse problems in linear elasticity, Inverse Problems, 20 (2004), 673696. 

3 
H. B. Ameur, M. Burger and B. Hackl, Cavity identification in linear elasticity and thermoelasticity, Math. Methods Appl. Sci., 30 (2007), 625647. 

4 
A. K. Buck, S. Nekolla, S. Ziegler, A. Beer, B. J. Krause, K. Herrmann, K. Scheidhauer, H.J. Wester, E. J. Rummeny, M. Schwaiger and A. Drzezga, SPECT/CT, The Journal of Nuclear Medicine, 49 (2008), 13051319. 

5 
J. K. Bucsko, SPECT/CT  The future is clear, Radiology Today, 5 (2004). 

6 
M. Burger, LevenbergMarquardt level set methods for inverse obstacle problems, Inverse Problems, 20 (2004), 259282. 

7 
V. Caselles, F. Catté, T. Coll and F. Dibos, A geometric model for active contours in image processing, Numer. Math., 66 (1993), 131. 

8 
A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math., 55 (1995), 827863. 

9 
T. F. Chan and L. A. Vese, "Image Segmentation Using Level Sets and the Piecewise Constant MumfordShah Model," UCLA CAM Report 0014, University of California, Los Angeles, 2000. 

10 
T. F. Chan and L. A. Vese, "A Level Set Algorithm for Minimizing the MumfordShah Functional in Image Processing," UCLA CAM Report 0013, University of California, Los Angeles, 2000. 

11 
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Image Processing, 10 (2001), 266277. 

12 
T. F. Chan and X.C. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, J. Comput. Phys., 193 (2004), 4066. 

13 
L. D. Cohen and R. Kimmel, Global minimum for active contour models: A minimum path approach, International Journal of Computer Vision, 24 (1997), 5778. 

14 
D. Delbeke, R. E. Coleman, M. J. Guiberteau, M. L. Brown, H. D. Royal, B. A. Siegel, D. W. Townsend, L. L. Berland, J. A. Parker, G. Zubal and V. Cronin, Procedure Guideline for SPECT/CT Imaging, The Journal of Nuclear Medicine, 47 (2006), 12271234. 

15 
M. C. Delfour and J.P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus, and Optimization," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. 

16 
V. Dicken, A new approach towards simultaneous activity and attenuation reconstruction in emission tomography, Inverse Probl., 15 (1999), 931960. 

17 
O. Dorn, Shape reconstruction in scattering media with voids using a transport model and level sets, Can. Appl. Math. Q., 10 (2002), 239275. 

18 
O. Dorn, E. L. Miller and C. M. Rappaport, A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Electromagnetic imaging and inversion of the Earth's subsurface, Inverse Problems, 16 (2000), 11191156. 

19 
J.P. Guillement, F. Jauberteau, L. Kunyansky, R. Novikov and R. Trebossen, On singlephoton emission computed tomography imaging based on an exact formula for the nonuniform attenuation correction, Inverse Probl., 18 (2002). 

20 
M. Hintermüller and W. Ring, "A Level Set Approach for the Solution of a State Constrained Optimal Control Problem," Technical Report 212, Special Research Center on Optimization and Control, University of Graz, Austria, 2001. (to appear in Numerische Mathematik) 

21 
M. Hintermüller and W. Ring, An inexact NewtonCGtype active contour approach for the minimization of the MumfordShah functional, J. Math. Imag. Vis., 20 (2004), 1942. 

22 
M. Hintermüller and W. Ring, A second order shape optimization approach for image segmentation, SIAM J. Appl. Math., 64 (2003), 442467. 

23 
K. Ito, K. Kunisch and Z. Li, Levelset function approach to an inverse interface problem, Inverse Problems, 17 (2001), 12251242. 

24 
S. JehanBesson, M. Barlaud and G. Aubert, DREAM$^2$S: Deformable regions driven by an Eulerian accurate minimization method for image and video segmentation, November 2001. 

25 
S. JehanBesson, M. Barlaud and G. Aubert, Video object segmentation using Eulerian regionbased active contours, in "International Conference on Computer Vision, Vancouver, July 2001." 

26 
M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, Int. J. of Computer Vision, 1 (1987), 321331. 

27 
H. Kudo and H. Nakamura, A new appraoch to SPECT attenuation correction without transmission maesurements, Nuclear Science Symposium Conference Record, 2 (2000), 13/5813/62. 

28 
L. A. Kunyansky, A new SPECT reconstruction algorithm based on the Novikov explicit inversion formula, Inverse Probl., 17 (2001), 293306. 

29 
A. Litman, D. Lesselier and F. Santosa, Reconstruction of a twodimensional binary obstacle by controlled evolution of a levelset, Inverse Problems, 14 (1998), 685706. 

30 
M. Mancas, B. Gosselin and B. Macq, Segmentation using a regiongrowing thresholding, in "Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series," (E. R. Dougherty, J. T. Astola and K. O. Egiazarian, eds.), volume 5672 of Presented at the Society of PhotoOptical Instrumentation Engineers (SPIE) Conference, (2005), 388398. 

31 
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577685. 

32 
F. Natterer, Inversion of the attenuated Radon transform, Inverse Probl., 17 (2001), 113119. 

33 
F. Natterer, "The Mathematics of Computerized Tomography," Volume 32 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. (reprint of the 1986 original) 

34 
F. Natterer, Determination of tissue attenuation in emission tomography of optically dense media, Inverse Probl., 9 (1993), 731736. 

35 
R. G. Novikov, An inversion formula for the attenuated $X$ray transformation, Ark. Mat., 40 (2002), 145167. 

36 
S. J. Osher and R. P. Fedkiw, "Level Set Methods and Dynamic Implicit Surfaces," Springer Verlag, New York, 2002. 

37 
S. J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I, Frequencies of a twodensity inhomogeneous drum, J. Comput. Phys., 171 (2001), 272288. 

38 
N. Paragios and R. Deriche, Geodesic active regions: A new paradigm to deal with frame partition problems in computer vision, International Journal of Visual Communication and Image Representation, Special Issue on Partial Differential Equations in Image Processing, Computer Vision and Computer Graphics, 2001. (to appear in 2001) 

39 
G. N. Ramachandran and A. V. Lakshminarayanan, Threedimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of fourier transforms, PNAS, 68 (1971), 22362240. 

40 
R. Ramlau, R. Clackdoyle, R. Noo and G. Bal, Accurate attenuation correction in SPECT imaging using optimization of bilinear functions and assuming an unknown spatiallyvarying attenuation distribution, ZAMM, Z. Angew. Math. Mech., 80 (2000), 613621. 

41 
R. Ramlau, TIGRAAn iterative algorithm for regularizing nonlinear illposed problems, Inverse Probl., 19 (2003), 433465. 

42 
R. Ramlau and W. Ring, A MumfordShah levelset approach for the inversion and segmentation of Xray tomography data, J. Comput. Phys., 221 (2007), 539557. 

43 
F. Santosa, A levelset approach for inverse problems involving obstacles, ESAIM: Control, Optimization and Calculus of Variations, 1 (1996), 1733. 

44 
G. Sapiro, "Geometric Partial Differential Equations and Image Analysis," Cambridge University Press, Cambridge, 2001. 

45 
J. A. Sethian, "Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science," Cambridge University Press, Cambridge, second edition, 1999. 

46 
L. A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci, (1974), 2143. 

47 
J. Sokołowski and J.P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," SpringerVerlag, Berlin, 1992. 

48 
J. A. Terry, B. M. W. Tsui, J. R. Perry, J. L. Hendricks and G. T. Gullberg, The design of a mathematical phantom of the upper human torso for use in 3d spect imaging research, in "Proc. 1990 Fall Meeting Biomed. Eng. Soc., Blacksburg, VA," New York University Press, (1990), 14671474. 

49 
D. Terzopoulos, Deformable models: Classic, topologyadaptive and generalized formulations, in "Geometric Level Set Methods In Imaging, Vision, and Graphics," Springer, New York, (2003), 2140. 

50 
O. Tretiak and C. Metz, The exponential Radon transform, SIAM J. Appl. Math., 39 (1980), 341354. 

51 
A. Tsai, A. Yezzi and A. S. Willsky, Curve evolution implementation of the MumfordShah functional for image segementation, denoising, interpolation, and magnification, IEEE Transactions on Image Processing, 10 (2001), 11691186. 

52 
J. Weickert, "Anisotropic Diffusion in Image Processing," European Consortium for Mathematics in Industry, Teubner, Stuttgart, Leipzig, 1998. 

53 
A. Welch, R. Clack, F. Natterer and G. T. Herman, Toward accurate attenuation correction in SPECT without transmission measurements, IEEE Trans. Med. Imaging, 16 (1997), 532541. 

54 
M. N. Wernick and J. N. Aarsvold (eds.), "Emission Tomography. The Fundamentals of PET and SPECT," Elsevier Academic Press, 2004. 

55 
A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen and J. Sikora, Threedimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method, Inverse Probl., 22 (2006), 15091532. 

Go to top
