Construction of selfdual codes with an automorphism of order $p$
Pages: 23  36,
Volume 5,
Issue 1,
February
2011
doi:10.3934/amc.2011.5.23 Abstract
References
Full text (353.3K)
Related Articles
Hyun Jin Kim  Department of Mathematics, Yonsei University, 134 Shinchondong, SeodaemunGu, Seoul 120749, South Korea (email)
Heisook Lee  Department of Mathematics, Ewha Womans University, 111 DaehyunDong, SeodaemunGu, Seoul, 120750, South Korea (email)
June Bok Lee  Department of Mathematics, Yonsei University, 134 Shinchondong, SeodaemunGu, Seoul 120749, South Korea (email)
Yoonjin Lee  Department of Mathematics, Ewha Womans University, 111 DaehyunDong, SeodaemunGu, Seoul, 120750, South Korea (email)
1 
I. Bouyukliev and S. Bouyuklieva, Some new extremal selfdual codes with lengths $44, 50, 54,$ and $58$, IEEE Trans. Inform. Theory, 44 (1998), 809812. 

2 
S. Bouyuklieva, A method for constructing selfdual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 46 (2000), 496504. 

3 
S. Bouyuklieva and I. Bouyukliev, Extremal selfdual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 44 (1998), 323328. 

4 
S. Bouyuklieva and P. Östergård, New constructions of optimal selfdual binary codes of length $54$, Des. Codes Crypt., 41 (2006), 101109. 

5 
S. Bouyuklieva, R. Russeva and N. Yankov, On the structure of binary selfdual codes having an automorphism of order a square of an odd prime, IEEE Trans. Inform. Theory, 51 (2005), 36783686. 

6 
J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of selfdual codes, IEEE Trans. Inform. Theory, 36 (1991), 13191333. 

7 
R. Dontcheva and M. Harada, Extremal selfdual codes of length 62 and related extremal selfdual codes, IEEE Trans. Inform. Theory, 48 (2002), 20602064. 

8 
R. Dontcheva and M. Harada, Some extremal selfdual codes with an automorphism of order 7, Algebra Eng. Commun. Comput. (AAECC J.), 14 (2003), 7579. 

9 
S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary selfdual codes, IEEE Trans. Inform. Theory, 43 (1997), 20362047. 

10 
T. A. Gulliver, J.L. Kim and Y. Lee, New MDS and nearMDS selfdual codes, IEEE Trans. Inform. Theory, 54 (2008), 43544360. 

11 
M. Harada, T. A. Gulliver and H. Kaneta, Classification of extremal doublecirculant selfdual codes of length up to 62, Discrete Math., 188 (1998), 127136. 

12 
M. Harada and H. Kimura, On extremal selfdual codes, Math. J. Okayama Univ., 37 (1995), 114. 

13 
W. C. Huffman, Automorphisms of codes with application to extremal doublyeven codes of length $48$, IEEE Trans. Inform. Theory, 28 (1982), 511521. 

14 
W. C. Huffman, The $[52,26,10]$ binary selfdual codes with an automorphism of order $7$, Finite Fields Appl., 7 (2001), 341349. 

15 
J.L. Kim, New extremal selfdual codes of length $36$, $38$, and $58$, IEEE Trans. Inform. Theory, 47 (2001), 386393. 

16 
J.L. Kim and Y. Lee, Euclidean and Hermitian selfdual MDS codes over large finite fields, J. Combin. Theory Ser. A, 105 (2004), 7995. 

17 
V. Pless, A classification of selforthogonal codes over $GF(2)$, Discrete Math., 3 (1972), 209246. 

18 
V. Pless, N. J. A. Sloane and H. N. Ward, Ternary codes of minimum weight 6 and the classification of the selfdual codes of length 20, IEEE Trans. Inform. Theory, 26 (1980), 306316. 

19 
H.P. Tsai, Existence of certain extremal selfdual codes, IEEE Trans. Inform. Theory, 38 (1992), 501504. 

20 
H.P. Tsai and Y. J. Jiang, Some new extremal selfdual $[58,29,10]$ codes, IEEE Trans. Inform. Theory, 44 (1998), 813814. 

21 
V. Y. Yorgov, Binary selfdual codes with automorphisms of an odd order, Problems Inform. Trans., 19 (1983), 260270. 

22 
V. Y. Yorgov, A method for constructing inequivalent selfdual codes with applications to length 56, IEEE Trans. Inform. Theory, 33 (1987), 7782. 

23 
S. Zhang and S. Li, Some new extremal selfdual codes with lengths $42, 44, 52,$ and $58$, Discrete Math., 238 (2001), 147150. 

Go to top
