`a`
Kinetic and Related Models (KRM)
 

On the Kac model for the Landau equation
Pages: 333 - 344, Volume 4, Issue 1, March 2011

doi:10.3934/krm.2011.4.333      Abstract        References        Full text (339.1K)           Related Articles

Evelyne Miot - Laboratoire de Mathématiques, Université Paris-Sud 11, bât. 425, 91405 Orsay, France (email)
Mario Pulvirenti - Dipartimento di Matematica Guido Castelnuovo, Università La Sapienza - Roma, P.le A. Moro, 5 00185 Roma, Italy (email)
Chiara Saffirio - Dipartimento di Matematica Guido Castelnuovo, Università La Sapienza - Roma, P.le A. Moro, 5 00185 Roma, Italy (email)

1 A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, (Russian), Mat. Sb., 181 (1992), 435-446; translation in Math. USSR-Sb., 69 (1991), 465-478.       
2 R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'' John Wiley & Sons, New-York, 1975.       
3 L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298.       
4 L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.       
5 T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions, J. Stat. Phys., 89 (1997), 751-776.       
6 M. Kac, Foundations of kinetic theory, in "Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability," University of California Press, Berkeley and Los Angeles (1956).       
7 A. I. Khinchin, "Mathematical Foundations of Information Theory," New York: Dover, 1957.       
8 L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10," Pergamon Press, Oxford-Elmsford, N.Y. 1981.       
9 R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit, J. Stat. Phys., 136 (2009), 1105-1130.       
10 M. Pulvirenti, The weak-coupling limit of large classical and quantum systems, in "International Congress of Mathematicians," Eur. Math. Soc., Zürich (2006).       
11 C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.       

Go to top