On the Kac model for the Landau equation
Pages: 333  344,
Volume 4,
Issue 1,
March
2011
doi:10.3934/krm.2011.4.333 Abstract
References
Full text (339.1K)
Related Articles
Evelyne Miot  Laboratoire de Mathématiques, Université ParisSud 11, bât. 425, 91405 Orsay, France (email)
Mario Pulvirenti  Dipartimento di Matematica Guido Castelnuovo, Università La Sapienza  Roma, P.le A. Moro, 5 00185 Roma, Italy (email)
Chiara Saffirio  Dipartimento di Matematica Guido Castelnuovo, Università La Sapienza  Roma, P.le A. Moro, 5 00185 Roma, Italy (email)
1 
A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the LandauFokkerPlanck equation, (Russian), Mat. Sb., 181 (1992), 435446; translation in Math. USSRSb., 69 (1991), 465478. 

2 
R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'' John Wiley & Sons, NewYork, 1975. 

3 
L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261298. 

4 
L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179259. 

5 
T. Goudon, On Boltzmann equations and FokkerPlanck asymptotics: Influence of grazing collisions, J. Stat. Phys., 89 (1997), 751776. 

6 
M. Kac, Foundations of kinetic theory, in "Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability," University of California Press, Berkeley and Los Angeles (1956). 

7 
A. I. Khinchin, "Mathematical Foundations of Information Theory," New York: Dover, 1957. 

8 
L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10," Pergamon Press, OxfordElmsford, N.Y. 1981. 

9 
R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit, J. Stat. Phys., 136 (2009), 11051130. 

10 
M. Pulvirenti, The weakcoupling limit of large classical and quantum systems, in "International Congress of Mathematicians," Eur. Math. Soc., Zürich (2006). 

11 
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273307. 

Go to top
